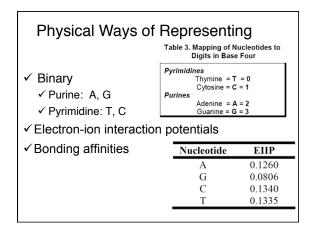
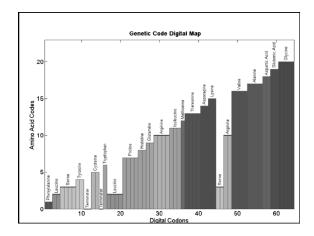
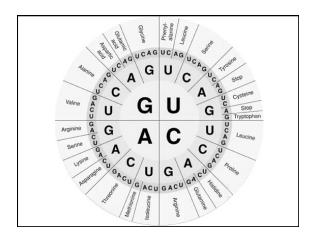
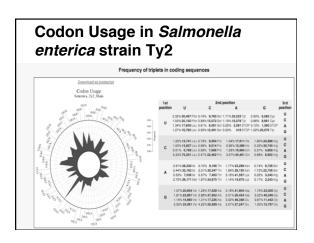

Reverse compler	ment prope	erty
 Ribosomes read fro end 		A COLOR
ena	5'3' G - C	
Reverse	C - G	0.000
complement of GCATT is AATGC	A - T	
	T - A	
	Τ-Α	3' " 5'
	3'5'	

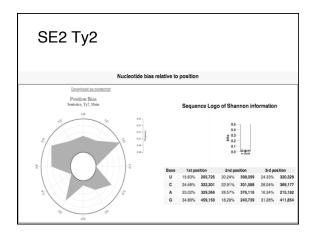

Complex representation: reverse complement and conjugate symmetric

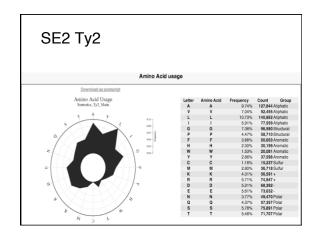

$$\widetilde{x}[n] = x^*[-n+N-1], \quad n = 0, 1, ..., N-1$$

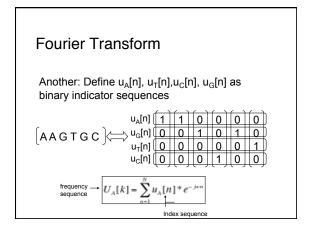

Conjugate symmetric, x[n], has a real fourier transform, linear phase, etc.

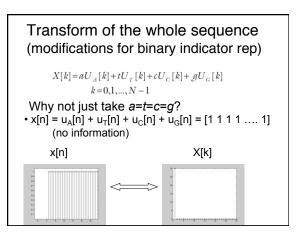
Review symmetry properties of Fourier Transform -- Schafer p. 55

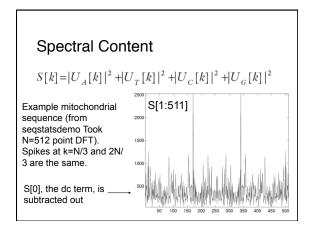


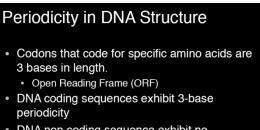





man Codir ucleotide C	-	-		
nucleotide	code	on posi	tion	
	1	2	3	
А	0.27	0.31	0.18	
С	0.24	0.24	0.31	
G	0.32	0.20	0.29	
Т	0.17	0.26	0.22	
	C/G Pref	A/T Pref	C/ GPre f	


	Hu	ma	an	Сс	odc	n	Us	ag	je						
		ре		ni OC	each n coo		on	C	erce ompo /non	ositio	on a	mor	g		
						The Hu	nan Co	don Usa	ze Table						
Gly Gly Gly Glu Glu Asp Asp Val Val Val Val	GGG GGA GGT GGC GAG GAA GAT GAC GTG GTA GTT GTC	17.08 19.31 13.66 24.94 38.82 27.51 21.45 27.06 28.60 6.09 10.30 15.01	0.23 0.26 0.18 0.33 0.59 0.41 0.44 0.56 0.48 0.10 0.17 0.25	Arg Arg Ser Ser Lys Lys Asn Asn Met Ile Ile	AGG AGA AGT AGC AAG AAA AAT AAC ATG ATA ATT ATC	12.09 11.73 10.18 18.54 33.79 22.32 16.43 21.30 21.86 6.05 15.03 22.47	0.22 0.21 0.14 0.25 0.60 0.40 0.44 0.56 1.00 0.14 0.35 0.52	Trp End Cys Cys End End Tyr Tyr Leu Leu Phe Phe	TGG TGA TGT TGC TAG TAA TAT TAC TTG TTA TTT TTC	14.74 2.64 9.99 13.86 0.73 0.95 11.80 16.48 11.43 5.55 15.36 20.72	1.00 0.61 0.42 0.58 0.17 0.22 0.42 0.58 0.12 0.58 0.12 0.06 0.43 0.57	Arg Arg Arg Gln His His Leu Leu Leu Leu	CGG CGA CGT CGC CAG CAA CAT CAC CTG CTG CTA CTT CTC	10.40 5.63 5.16 10.82 32.95 11.94 9.56 14.00 39.93 6.42 11.24 19.14	0.19 0.09 0.19 0.73 0.27 0.41 0.59 0.43 0.07 0.12 0.20
Ala Ala Ala Ala	GCG GCA GCT GCC	7.27 15.50 20.23 28.43	0.10 0.22 0.28 0.40	Thr Thr Thr Thr	ACG ACA ACT ACC	6.80 15.04 13.24 21.52	0.12 0.27 0.23 0.38	Ser Ser Ser Ser	TCG TCA TCT TCC	4.38 10.96 13.51 17.37	0.06 0.15 0.18 0.23	Pro Pro Pro Pro	CCG CCA CCT CCC	7.02 17.11 18.03 20.51	0.11 0.27 0.29 0.33





Recap

 DNA non coding sequence exhibit no periodicity

Review:	Open Reading Frame
<u>Frame Offset</u> 0 1 2	ATGTAÇACATTTGTAAAATGA ATGTACACATTTGTAAAATGA ATGTACACATTTGTAAAATGA
✓ Periodici	ties occur in Codon Position

Reason for Periodicity in DNA

- Imbalance in distribution of nucleotides in each ORF position
 - Caused by protein preference towards certain amino acid combinations
 - Bias in coding region that does not exist in non-coding regions.

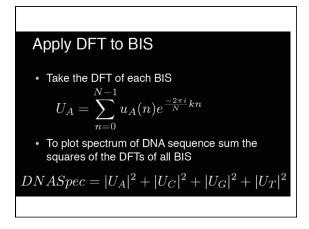
Processing a DNA Sequence

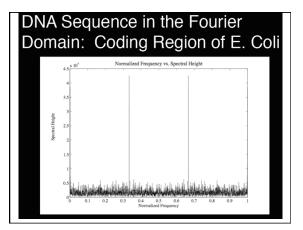
- 1. Acquire DNA Sequence
- 2. Transform the character string into a numeric representation
- 3. Transform numeric string into the Frequency Domain
- 4. Check for a peak at frequency, f=1/3

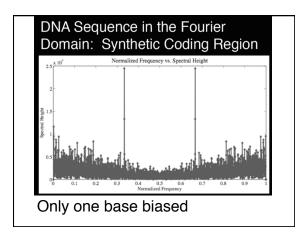
IMPORTANT HINT: Remove the DC Component when plotting

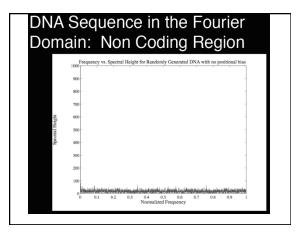
Numeric Representation: BIS

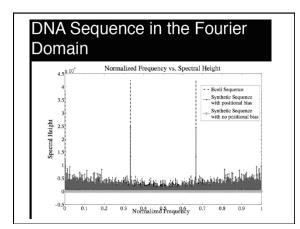
- Binary Indicator Sequences (BIS)
- Parse through the DNA sequence and mark all locations with a specific base as a 1, all others as a 0

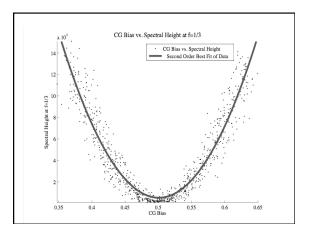

Discrete Fourier Transform (DFT)

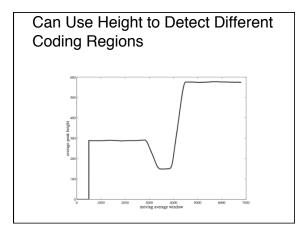

- Way to transform data into the frequency (aka Fourier) domain
- Requires input function that is:
 - Discrete

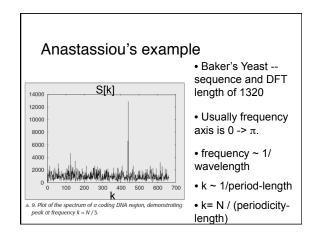

Finite Duration

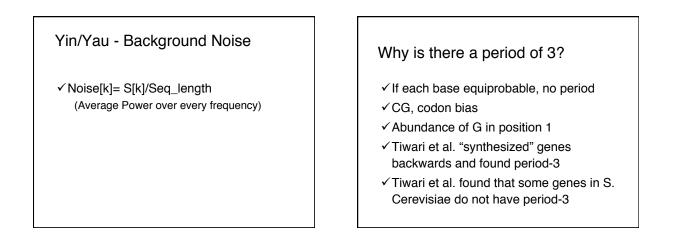

Calculate the DFT $X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} \quad k = 0, ..., N-1$ • e is The exponential function • i is the imaginary unit

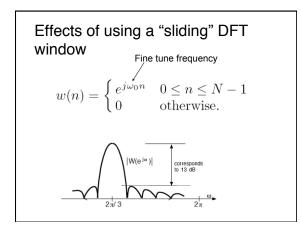

- N is the length of the DFT
- In order for the DFT to have full resolution and not truncate data $N \geq M$,M=length of the original sequence

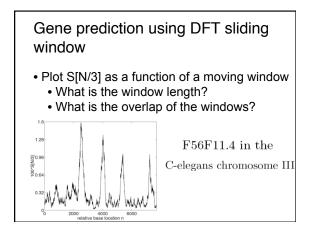


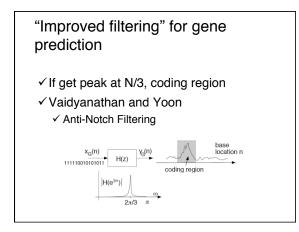


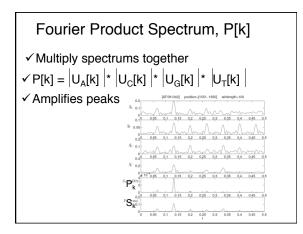


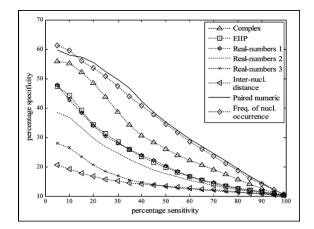


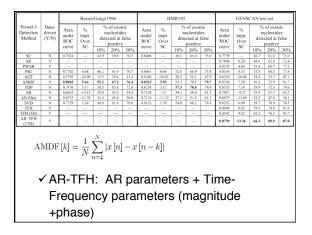









Sues with the Spectral methods Can we exploit the spectrum to also signify structural attributes of the sequence? Why just the magnitude? Is there no phase information to exploit? Assume that a lot of information from coding to non-coding (frameshifts).


Coding Bias Measure from Spectrums (Yin/Yau 2005) Occurence of each nucleotide in each ORF position for nucleotide x: F_{x1} F_{x2} F_{x3} The spectral peak height to these occurences $PS(N/3) = \sum_{x=A,T,C,G} [F_{x1}^2 + F_{x2}^2 + F_{x3}^2 - (F_{x1} * F_{x2} + F_{x1} * F_{x3} + F_{x2} * F_{x3})]$

$X_A[N/3] \sim Pr(A \text{ in } ORF1 \cup A \text{ in})$ ORF2 ∪ A in ORF3) ✓ Measure of how frequent A is every 3 nucleotides Frame Offset ATGTACACATTTGTAAAATGA 0 **ΑΤGŢACĄCATŢTGŢAA**Ą**A**ŢĢA 1 ATGTACACATTTGTAAAATGA 2 ORF 1 Sequence: ATATGAT F_{A1}=3/7 F_{A2}=2/7 ORF 2 Sequence: TACTTAG F_{A3}=4/7 ORF 3 Sequence: GCATAAA

Mahmood and Epps: Numeric Representation can affect DFT • Complex • EIIP (electron-ion interaction potential) • Real Numbers • T=0; C=1; A=2;G=3 • A=0; G=1; C=2; T=3 • A=1.5; T=-1.5, C=0.5,G=0.5 (Amplitude Modulation) • Internucleotide Difference (replaces each DNA nucleotide with an integer representing the distance between the current nucleotide and the next similar nucleotide.) • Paired Numeric (A-T: 1, C-G:0)

Frequency of Nucleotide Occurrence

		FABLE I RY OF DATA	SETS		
Dataset	Organisms	# gene sequence	# bp	# exon	Coding density (%)
Burset/Guigo1996 [10]	Vertebrate	570	2,892,149	2649	15.37
HMR195 [11]	Mammalian	195	1,383,720	948	14
GENSCAN Learning Set [45]	Human	380	2,581,000	1492	16
GENSCAN Test Set [45]	Human	65	591,886	381	10.2