

Nucleotides are parts/code
\checkmark How would you start to analyze it?
\checkmark How would you represent each nucleotide in mathematical notation?

Simple Representation

\checkmark Arbitrary nucleotide assignment to integers
\checkmark A <->0
\checkmark C $<->1$
\checkmark G<->2
$\checkmark \mathrm{T}<->3$
\checkmark Does this make sense?

Binary Indicator Sequence

\checkmark GCATTATGCAAGTT
\checkmark G: 10000001000100
\checkmark C: 01000000100000
\checkmark A: 00100100011000
\checkmark T: 00011010000011
\checkmark What is sequence representation useful for?

Complex Representation (similar QPSK in Telecom)

A	$\begin{gathered} C \\ { }^{C}+{ }_{1+j} \end{gathered}$	01-C
${ }^{\circ}{ }_{-1+j}$		00-A
		10-T
T	G	11-G
${ }^{\circ}{ }_{-1-\mathrm{j}}$	${ }^{\circ}{ }_{1-j}$	

Rotation:
\checkmark Conjugate \sim Complement
$a=-1$,
$c=-j$,
$g=j$,
$t=1$.

Filter coefficients in paper

Reverse complement property

- Ribosomes read from 5' to 3' end

Complex representation: reverse complement and conjugate symmetric
$\widetilde{x}[n]=x^{*}[-n+N-1], \quad n=0,1, \ldots, N-1$

Conjugate symmetric, $x[n]$, has a real fourier transform, linear phase, etc.

Review symmetry properties of Fourier Transform -- Schafer p. 55

Quadrature Phase Shift Keying

Transmitting Sines and Cosines

Phase Change	Example State Change	Dibit	
0°	$\mathrm{A}>\mathrm{A}$	00	
9	90°	$\mathrm{A}>\mathrm{B}$	01
180°	$\mathrm{B}->\mathrm{D}$	11	
270°	$\mathrm{D}->\mathrm{C}$	10	

Human Coding Regions (Nucleotide ORF bias)

nucleotide	codon position						
	1	2	3				
A	0.27	0.31	0.18				
C	0.24	0.24	0.31				
G	0.32	0.20	0.29				
T	0.17	0.26	0.22				
					C / G	A / T	$\mathrm{C} /$
		Pref	Pref				
GPre							
			f				

Codon Usage in Salmonella enterica strain Ty2

Transform of the whole sequence

 (modifications for binary indicator rep)$$
\begin{gathered}
X[k]=a U_{A}[k]+t U_{T}[k]+c U_{C}[k]+g U_{G}[k] \\
k=0,1, \ldots, N-1
\end{gathered}
$$

Why not just take $a=t=c=g$?
$\cdot x[n]=u_{A}[n]+u_{T}[n]+u_{C}[n]+u_{G}[n]=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array} \ldots\right.$. 1] (no information)

Recap

Periodicity in DNA Structure

- Codons that code for specific amino acids are 3 bases in length.
- Open Reading Frame (ORF)

DNA coding sequences exhibit 3-base periodicity
DNA non coding sequence exhibit no periodicity

Reason for Periodicity in DNA

- Imbalance in distribution of nucleotides in each ORF position
- Caused by protein preference towards certain amino acid combinations
- Bias in coding region that does not exist in non-coding regions.

Processing a DNA Sequence

1. Acquire DNA Sequence
2. Transform the character string into a numeric representation
3. Transform numeric string into the Frequency Domain
4. Check for a peak at frequency, $f=1 / 3$

IMPORTANT HINT: Remove the DC Component when plotting

Calculate the DFT

- e is The exponential function
- i is the imaginary unit
- N is the length of the DFT
- In order for the DFT, to have full resolution and not truncate data $N \geq M$,M=length of the original sequence

Apply DFT to BIS

- Take the DFT of each BIS

$$
U_{A}=\sum_{n=0}^{N-1} u_{A}(n) e^{\frac{-2 \pi i}{N} k n}
$$

- To plot spectrum of DNA sequence sum the squares of the DFTs of all BIS

DNASpec $=\left|U_{A}\right|^{2}+\left|U_{C}\right|^{2}+\left|U_{G}\right|^{2}+\left|U_{T}\right|^{2}$

DNA Sequence in the Fourier
Domain: Coding Region of E. Coli

DNA Sequence in the Fourier
Domain: Synthetic Coding Region

Only one base biased

DNA Sequence in the Fourier
Domain: Non Coding Region

DNA Sequence in the Fourier Domain

Can Use Height to Detect Different Coding Regions

Yin/Yau - Background Noise

\checkmark Noise[k]= S[k]/Seq_length
(Average Power over every frequency)

Why is there a period of 3 ?

\checkmark If each base equiprobable, no period
\checkmark CG, codon bias
\checkmark Abundance of G in position 1
\checkmark Tiwari et al. "synthesized" genes backwards and found period-3
\checkmark Tiwari et al. found that some genes in S. Cerevisiae do not have period-3

Effects of using a "sliding" DFT

 window$w(n)= \begin{cases}e^{j \omega_{0} n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise } .\end{cases}$

Gene prediction using DFT sliding

 window- Plot $S[N / 3]$ as a function of a moving window
-What is the window length?
- What is the overlap of the windows?

F56F11.4 in the
C-elegans chromosome III

"Improved filtering" for gene prediction

\checkmark If get peak at $\mathrm{N} / 3$, coding region
\checkmark Vaidyanathan and Yoon
\checkmark Anti-Notch Filtering

Issues with the Spectral methods
\checkmark Can we exploit the spectrum to also signify structural attributes of the sequence?
\checkmark Why just the magnitude? Is there no phase information to exploit? Assume that a lot of information from coding to non-coding (frameshifts).

Fourier Product Spectrum, P[k]

\checkmark Multiply spectrums together
$\checkmark P[k]=\left|U_{A}[k]\right|^{*}\left|U_{C}[k]\right|^{*}\left|U_{G}[k]\right|^{*} \mid U_{T}[k]$
\checkmark Amplifies peaks

Coding Bias Measure from

 Spectrums (Yin/Yau 2005)Occurence of each nucleotide in each ORF position for nucleotide x:

$$
F_{x 1} \quad F_{x 2} \quad F_{x 3}
$$

The spectral peak height to these occurences
$P S(N / 3)=\sum_{x=A, T, C, G}\left[F_{x 1}^{2}+F_{x 2}^{2}+F_{x 3}^{2}\right.$

$$
\left.-\left(F_{x 1} * F_{x 2}+F_{x 1} * F_{x 3}+F_{x 2} * F_{x 3}\right)\right] .
$$

Mahmood and Epps: Numeric

Representation can affect DFT

- Complex
- EIIP (electron-ion interaction potential)
- Real Numbers
-T=0; C=1; A=2;G=3
- $A=0 ; \mathrm{G}=1$; $\mathrm{C}=2 ; \mathrm{T}=3$
- $\mathrm{A}=1.5$; $\mathrm{T}=-1.5, \mathrm{C}=0.5, \mathrm{G}=0.5$
(Amplitude Modulation)
- Internucleotide Difference (replaces each DNA nucleotide with an integer representing the distance between the current nucleotide and the next similiar nucleotide.)
- Paired Numeric (A-T: 1, C-G:0)
- Frequency of Nucleotide Occurrence

Period-3 DetectionMethod	$\begin{array}{\|l\|l} \text { Datar } \\ \text { diriven } \\ \text { (YN }) \end{array}$	Bursel Guigol 1996					HMR195					GENSCAN test set				
		$\begin{aligned} & \text { Area } \\ & \text { under } \\ & \text { coure } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { \% } \\ \text { impr. } \\ \text { Ocr } \\ \text { sc } \end{array}$	$\begin{gathered} \text { \% of exonic } \\ \text { nuclotides } \\ \text { detected at false } \\ \text { positive } \end{gathered}$			$\begin{aligned} & \text { Area } \\ & \text { undder } \\ & \text { Roc } \\ & \text { curre } \end{aligned}$	$\begin{aligned} & \text { \% \% } \\ & \text { impr. } \\ & \text { Oct } \\ & \text { sc } \end{aligned}$	\% of exonicnucletidesdetected tal falsepositive			$\begin{aligned} & \text { Andar } \\ & \text { under } \\ & \text { curve } \end{aligned}$	$\begin{aligned} & \% \text { \% } \\ & \text { \%pr. } \\ & \text { Over } \\ & \text { sc } \end{aligned}$			
				10\%	20\%	30\%			10\%	20\%	30\%			10\%		30\%
SC	$\stackrel{N}{\mathrm{~N}}$	0.684	-	${ }^{22}$	598	20.5	osmos	-	49.1	65.	25.	0.7778		${ }_{4}^{467}$	${ }^{61,6}$	
${ }_{\text {SR }}^{\text {PWSR }}$	γ											${ }^{0.7800}$	${ }_{4}^{0.29}$	${ }_{4}^{45.6}$	${ }_{629} 6$	
PSC	N	0.702	0.88	462	61.0	20.7	0.8061	0.66	520	66.9	788	0.814	432	523	683	77.6
ACF	N	0.50	${ }^{-2469}$	159	29.4	114	(0)	-2083	203	3.	479	0 an	120	${ }_{18}^{18.4}$	${ }^{32}$	
AMDF	N	0.5068	S. 64	52	672	764	0×13	1.93	ss.	70.5	79.7	0.81	120	862	129	
TDP	N	0.7876	3.17	305	638	22.	0×2	3.12	575	7.6	${ }^{780}$	0.8	7.16		72.	
AR	N	0.56	13.13	29.	43	54.4	0.71	-11	34.1	50.0	${ }^{61.3}$	0.7	9.2	5,		32,
in filer	N		-11,78		45.6	560				51.2						
SVD	N	0.7789	124	480	618	${ }^{20.6}$	0812	1,79	4.	68.2	8.6		609			5
- $\frac{\text { TH }}{\text { THP }}$	r			-	-	-	-	-	-	-	-	$0_{0 \times 48}^{0.80}$	8.82	${ }_{6} 93$	749	${ }_{81} 8.6$
${ }^{\text {AR-TrH }}$																
(17D)	r	-	-	-	-	-	-	-	-	-				${ }^{60} 5$	80.	

$\operatorname{AMDF}[k]=\frac{1}{N} \sum_{n=1}^{N}|x[n]-x[n-k]|$
\checkmark AR-TFH: AR parameters + TimeFrequency parameters (magnitude +phase)

