## **AR Modeling**

### **ECE-S690**



## Important

- Literature Review and Project Proposals

   NEXT WEEK
- 30 minute presentations (20 minutes on background, problems, methods and 10 minutes on proposal)

# **ARMA Modeling**

- Y(z)=H(z)X(z)
- Y(z)/X(z)=H(z) (Input/Output)
- H(z)=B(z)/A(z)
- A(z) models poles
- B(z) models zeros



## Example: Speech Processing



## Speech little more complex...but



## **Pole-Zero Plots**



# **ARMA Modeling**



# **ARMA Modeling**

- A(z) can be approximated by a coefficients
- B(z) can be approximated by b coefficients

## **Time/Frequency Domain**

$$y(n) = \sum_{m=1}^{N} a_m y(n-m) + \sum_{m=0}^{M} b_m x(n-m)$$

$$\frac{Y(e^{j\omega})}{X(e^{j\omega})} = H(e^{j\omega}) = \frac{B(e^{j\omega})}{A(e^{j\omega})} = \frac{\sum_{m=0}^{M} b_m e^{-j\omega m}}{1 - \sum_{m=1}^{N} a_m e^{-j\omega m}}$$

## Autocorrelation review

$$r_{xx}(m) = E[x(n+m)x(n)]$$
Stationary, Ergodic
$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x(n+m)x(n),$$

**Classical Estimator** 

$$\hat{r}_{b}(m) = \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n+|m|) x(n)$$
Symmetry

## Power Spectrum relations

$$r_{xx}(m) \leftarrow Fourier Transform \qquad P(e^{j\omega})$$

Transform of Autocorrelation is Power Spectrum

$$P(e^{j\omega}) = \frac{B(e^{j\omega})}{A(e^{j\omega})}^2$$

## DNA AR modeling



## Linear Prediction Analysis



Model Poles only -- Inverse Filtering

# Yule-Walker: Popular Way to get **a** coefficients

$$\begin{pmatrix} R_0 & R_1 & \cdots & R_{p-1} \\ R_1 & R_0 & \cdots & R_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ R_{p-1} & R_{p-2} & \cdots & R_0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix} = - \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_p \end{pmatrix}$$

#### **AKA: Levinson-Durbin** Minimize Error x[n] e[n] A(z) X(z)1 N $E(z) \quad 1 - A(z)$ 1--m $a_m z$ m=1

$$e[n] = x[n] - \sum_{m=1}^{N} a_m x[n-m]$$

# Derivation of Mean Square Error (MSE)

 $E = \sum_{n=0}^{N-1} e_n^2$  $=\sum_{n=0}^{N-1} \left( s_n - \sum_{i=1}^{p} a_i s_{n-i} \right)^2$  $= \sum_{n=0}^{N-1} \left( s_n^2 - 2 \sum_{i=1}^p a_i s_n s_{n-i} + \sum_{i=1}^p \sum_{i=1}^p a_i a_j s_{n-i} s_{n-j} \right)$  $= \sum_{n=0}^{N-1} s_n^2 - 2\sum_{i=1}^p a_i \sum_{n=0}^{N-1} s_n s_{n-i} + \sum_{i=1}^p \sum_{i=1}^p a_i a_j \sum_{n=0}^{N-1} s_{n-i} s_{n-j}$  $= \sum_{i=1}^{p} \phi_{00} - 2 \sum_{i=1}^{p} a_i \phi_{0i} \sum_{i=1}^{p} \sum_{i=1}^{p} a_i a_j \phi_{ij}$  $= \begin{bmatrix} -1 & a_1 & a_2 & \cdots & a_p \end{bmatrix} \begin{bmatrix} \phi_{00} & \phi_{01} & \phi_{02} & \cdots & \phi_{0p} \\ \phi_{10} & \phi_{11} & \phi_{12} & \cdots & \phi_{1p} \\ \phi_{20} & \phi_{21} & \phi_{22} & \cdots & \phi_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{p0} & \phi_{p1} & \phi_{p2} & \cdots & \phi_{pp} \end{bmatrix} \begin{bmatrix} -1 \\ a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$ 

Energy/MSE = a<sup>T</sup>Ra

 $E_a = a^T Ra$ 

 $E_b = b^T R b$ 

R (autocorrelation of Frame 1)

# LP and AR modeling Matlab Tutorial

 http://www.mathworks.com/products/sig nal/demos.html?file=/products/demos/s hipping/signal/lpcardemo.html#10



## Rosen, Gensips 2007

Performance of DNA Representations

**Real Representation:** 

$$A = 1.5, C = 0.5, G = -0.5, T = -1.5$$

Binary (A+T) Rule:

A = 1, C = 0, G = 0, T = 1



The Real vs. Binary A+T mapping for the Euclidean distance between the exon's and each sequence window's AR coefficients; the sequence window length is the length of the exon. Shown is a portion of S. Cerevisiae chromosome XIV. The exon is located at  $7682 \rightarrow 8404$  within this portion and is modeled with an AR order of p = 14.



#### Itakura Distance:



 $d_i(S_a, S_b) = \log_{10} \frac{A_b^T R_a A_b}{A_a^T R_a A_a} = \log_{10} \frac{MSE_{ab}}{MSE_{aa}}$ 

#### **Euclidean Distance:**

$$d_e(S_a, S_b) = \sqrt{\sum_{i=1}^{p} (a_a(i) - a_b(i))^2}$$



The Euclidean vs. the Itakura distance with the Binary A+T mapping, using the same S. Cerevisiae sequence and same model order of p = 14.

### Performance on Perturbed Sequences

#### Effect of increasing error:



AR Euclidean distance performance vs. percentage mutation rate for model order p = 14 on the S. Cerevisiae sequence. A Binary A+T mapping is used.

#### Increasing model order becomes more robust to error:



AR Euclidean distance performance vs. model order for a 20% mutation rate on the S. Cerevisiae sequence. A Binary A+T mapping is used.

**Real Sequences** 

#### Human Hemoglobin Delta (HHD) exon:



Performance of Euclidean distance for p = 72 AR model order vs. mapping for matching a Human Hemoglobin Delta exon (Genbank Accession EF051731, nucleotides  $290 \rightarrow 512$ ) to a Human Beta Globin Region on Chromosome 11 (Genbank Accession U01317.1, nucleotides  $19000 \rightarrow 63000$ ). The real mapping is used.



#### HHD vs. Human mRNA:



Performance of Euclidean distance AR model order for matching a Human Hemoglobin Delta exon (Genbank Accession EF051731, nucleotides 290 → 512) to a Human clone Affy08244A08 (mRNA)(Genbank Accession DQ655982.1). The real mapping gave the best match distinction.

### **Conclusions**

- The Numerical Mapping has no effect on the AR similarity measure.
- The Euclidean distance presents greater divergence between the matching and non-matching regions, as opposed to the Itakura distance.
- AR method robust to high error-rates.
- Increasing Model Order improves accuracy, although at high computational cost.
- Method works well on matching real exon regions (known 3base periodic).
- Trade-off: method is computationally intensive.
- Need: Model order selection for accuracy.

## **Chakravarthy Paper**

## Analysis 2

A(z) coefficients -- Feature vector

**a**= [1 a<sub>1</sub> a<sub>2</sub> a<sub>3</sub> ... a<sub>N</sub>]

Advantage: Different Length DNA -- get comparable parameters(distance and correlations)

Disadvantage: Need high-order models? (Speech ~ order of 8 to 10 coeffs)

# Analysis 3

 Says that for comparing spectra, need high order models

# Residual from Gene1 AR model (binary indicator)



## Residual from Gene1 AR model (Real-number)



## AR Gene models with noncoding



Gene 1 with some noncoding seqs Gene 17 with 36-50 noncoding

Models a noncoding one better than itself Models another better than itself

## Moving algorithm

- 1. Calculate AR parameters for a template
- Calculate AR parameters for a window length, L, of nucleotides
- Calculate Euclidean distance between feature vectors
- Increment by a small bit (overlapping windows)
- 5. Repeat 2 through 5

## Distance between feature vectors



(a)



(b)



## Itakura Distance

How much better is a in predicting Frame 1 than
 b?

$$\checkmark$$
 d(**a**,**b**)= log(E<sub>b</sub>/E<sub>a</sub>)

How much better is a in predicting Frame 1 than
 b?

✓ Not symmetrical so use:

 $d_{avg}(a,b) = 1/2[d(a,b)+d(b,a)]$ 

# Homework

• Major differences in nucleotide biases:

>> codoncount (Dfp1)

Dictyostelium firmibasis plasmid Dfp1, NC 001923

| 76%<br>Coi        | % CG |
|-------------------|------|
| Τ:                | 1761 |
| G:                | 634  |
| С:                | 567  |
| $\square \bullet$ | 2000 |

|            |         | // 000 |     | ~~~~~~~/~~~/~~/~~/ |    |       |    |       |     |
|------------|---------|--------|-----|--------------------|----|-------|----|-------|-----|
| 7          |         | AAA -  | 152 | AAC -              | 31 | AAG - | 27 | AAT - | 74  |
| Α:         | 2053    | ACA -  | 57  | ACC -              | 15 | ACG - | 2  | ACT - | 32  |
| •          |         | AGA –  | 41  | AGC -              | 8  | AGG – | 5  | AGT – | 36  |
| С:         | 567     | ATA –  | 84  | ATC -              | 8  | ATG - | 34 | ATT - | 77  |
| •••        | 001     | CAA -  | 25  | CAC -              | 5  | CAG - | 4  | CAT - | 23  |
| <b>G</b> • | 634     | CCA -  | 25  | CCC -              | 2  | CCG - | 4  | CCT - | 9   |
| •          | FC0     | CGA -  | 9   | CGC -              | 0  | CGG - | 0  | CGT - | 8   |
| Π•         | 1761    | CTA –  | 20  | CTC -              | 2  | CTG - | 5  | CTT - | 26  |
| ⊥ •        | TIOT    | GAA –  | 62  | GAC -              | 13 | GAG - | 14 | GAT - | 68  |
|            |         | GCA -  | 22  | GCC -              | 10 | GCG - | 0  | GCT - | 2   |
|            |         | GGA –  | 9   | GGC -              | 4  | GGG - | 2  | GGT - | 17  |
|            |         | GTA –  | 31  | GTC -              | 4  | GTG - | 5  | GTT - | 38  |
| 760        |         | TAA –  | 40  | TAC -              | 18 | TAG – | 13 | TAT - | 83  |
| 10         | /0 UG   | TCA -  | 48  | TCC -              | 6  | TCG - | 3  | TCT - | 16  |
|            | otont   | TGA –  | 13  | TGC -              | 1  | TGG - | 8  | TGT - | 25  |
|            | IIIEIII | TTA –  | 79  | TTC -              | 20 | TTG - | 21 | TTT - | 126 |

# **Open Reading Frame Review**

Any given nucleotide sequence (single DNA strand or mRNA) can be interpreted in three possible ways, depending on where the coding starts.



## Base count for each base position

- Elegant Code
  - x1=x(1:3:end);

basecount(x1);

- x2=x(2:3:end);
basecount(x2);

## Human Enterovirus C

| Dfp | 1 |
|-----|---|
|-----|---|

| А   | С   | G   | Т   |
|-----|-----|-----|-----|
| 781 | 437 | 738 | 511 |
| 731 | 614 | 443 | 679 |
| 682 | 596 | 513 | 676 |

| Α   | С   | G   | Т   |
|-----|-----|-----|-----|
| 683 | 167 | 301 | 521 |
| 653 | 253 | 186 | 580 |
| 717 | 147 | 147 | 660 |

## Window Differences





# GC-rich / GC-poor



- http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=152811 (Substitution Pressure is AT-biased)
- http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=1463024 (GC Rich gene produces 10x as much protein as poor one)