Dynamic Programming for Pairwise Alignment

Professor Gail L. Rosen

GAATTCAG | | || | GGA-TC-G

Dynamic Programming invented around WWII

1950: Allocate missiles to reflect maximum damage to targets - multistage solution needed Solve: $\quad V_{i}$: i_{th} target

$$
E(D)=\sum_{i=1}^{N} p_{i}\left(S_{i}\right) V_{i}
$$

Subject to:

$$
\sum_{i=1}^{N} S_{i}=S
$$

S_{i} : \# of S missiles allocated to $i_{\text {th }}$ target
$\mathrm{p}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{i}}\right)$: Probability that $\mathrm{i}_{\text {th }}$ target will be destroyed by S_{i} $0 \leq S_{i} \leq S, \quad i=1,2, \ldots, N \quad$ missiles

Dynamic Time Warping:

Optimization for Aligning two time signals
\checkmark Published by Vintsyuk in 1968
\checkmark Optimized for Speech in 1978

Nice Matlab example:
http://labrosa.ee.columbia.edu/matlab/dtw/

Same algorithm - different optimization constraints

\checkmark DTW: minimize cost function (usually of distance measure between signals)
\checkmark DNA alignment: maximize similarity score between DNA sequences

DTW for Speech

$$
D(i, j)=\min [D(i-1, j-1), D(i=1, j), D(i, j-1)]+d(i, j) . \quad d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}
$$

Minimum cost at each point
Distance Measure

Needleman-Wunsch Algorithm (DP for DNA)

\checkmark 1970: Local pairwise similarity
Each Window of data
GAATTCAG \vec{x} Reward (Score) for match Penalty for mismatch or
GGATCG \vec{y} indel

$$
D(i, j)=\max (i(i-1, j-1), D(i-1, j), D(i, j-1))+d(i, j)
$$

Maximum score at each point

```
GAATTCAG
| | || |
GGA-TC-G
```


Three different point-mutations

\checkmark Mismatch/Substitution
\checkmark Insertion
\checkmark Deletion
"Gap-insertion"
Or just plain "gap"

Different scoring rules -> different alignments

Dynamic programming: global alignment
Match=5, mismatch =-4, gap $=-2$

$$
\begin{aligned}
& \text { G C T G GAA G } A \text { G CA }-\mathrm{T} \\
& \mid \\
& \text { GC }
\end{aligned}
$$

Scoring rules/matrices

\checkmark Why are they important?
\checkmark Choice of scoring rule can dramatically influence the sequence alignments obtained and, therefore, the analysis being done
\checkmark Different scoring matrices have been developed for different situations; using the wrong one can make a big difference.
\checkmark What do they mean?
\checkmark Scoring matrices implicitly represent a particular theory of evolution
\checkmark Elements of the matrices specify relationships between amino acid residues or nucleotides

Substitution Matrice

Log-odds ratio -> log likelihood ratio that the pair (a, b) is related vs unrelated (depends on scoring matrices)
The alignment score is the log likelihood that the sequences have common ancestry

Alignment Scores measure

 likelihood of common ancestor$$
\mathbf{a}=\left[a_{1} a_{2} . . a_{N}\right] \quad \mathbf{b}=\left[b_{1} b_{2} . . b_{N}\right]
$$

$$
\left\{\begin{array}{l}
\text { Two DNA } \\
\text { sequences }
\end{array}\right.
$$

$$
p_{\mathbf{a}} p_{\mathbf{b}}=\prod_{i} p_{a_{i}} \prod_{i} p_{b_{i}}
$$

sequences are independent at each position i

$$
q_{\mathbf{a}, \mathbf{b}}
$$

sequences have joint probability
$\prod_{i} \frac{q_{a, b_{i}}}{p_{a_{i}} p_{b_{i}}} \quad \succ$ Odds-Ratio

Substitution Matrix Calculations

\checkmark p's are background independent frequencies Probability of a occurring in a position in

A	(A)	R	S
V	V	K	S

We need scoring terms for each aligned residue pair
Models: Random model (R): letter a occurs with frequency p_{a}

\checkmark q's are joint probabilities

Probability of A and V occurring in both sequences jointly

A	A	R	S
V	V	K	S

Models: Match model (M): aligned pairs of residues have joint probability $\mathrm{pab}_{\mathrm{ab}}$ $p_{a b}=$ probability that a and b came from
common ancestor residue

Log-Odds Ratio

$\sum_{i}^{\sum \log \left(\frac{q_{a, b_{i}}}{p_{a_{i}} p_{b_{i}}}\right)} \quad \begin{aligned} & \begin{array}{l}\text { Adding log-odds substitution } \\ \text { scores gives the log-odds o } \\ \text { alignment }\end{array} \\ & \text { Substitution Matrix }\end{aligned}$ Score

* Positive if probability of alignment is greater than chance
* Negative if probability of alignment is less than chance

GAP Penalties - mostly heuristic

\checkmark Substitutions can be derived
\checkmark Gaps are usually heuristic and can vary
\checkmark Linear
\checkmark Extension

Can get "normalized score" estimate lambda

$$
S_{i j}=\log \frac{q_{i j}}{p_{i} p_{j}}
$$

$\sum_{i=1}^{n} \sum_{j=1}^{i} q_{i j}=1$	Frequencies sum up to 1
$\lambda S_{i j}=\log _{e} \frac{q_{i j}}{p_{i} p_{j}}$	λ is the factor that converts a raw score to a normalised score
$q_{i j}=p_{i} p_{j} e^{\lambda S_{i j}}$	Previous equation rewritten
$\sum_{i=1}^{n} \sum_{j=1}^{i} q_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{i} p_{i} p_{j} e^{\lambda S_{i j}}=1$	p_{i}, p_{j} and $S_{i j}$ are known a priori. λ can be estimated using bisection

Mathematical Formulation of E value

$$
\mathbf{E}=\mathbf{m} \cdot \mathbf{n} \cdot \mathbf{p}^{\mathbf{s}}
$$

(Expected number of matches)
P : probability of match
S : number of matches

We are not doing a simple string match. Need more complicated

Ultimate expression

expected number of HSPs with score at least S is given by the formula

HSP=
Highest
Scoring
Pairs

Length of
 Normalized score each
 sequence
 multiplied

Relation of E value to Number of matches occurring by chance

$$
P(X=x)=e^{-E} \cdot \frac{E^{x}}{x!}
$$

the chance of finding zero HSPs with score $>=S$ is e^{-E}
P-VALUE: Prob of finding at least one HSP by chance:

$$
P=1-e^{-E}
$$

BLAST

\checkmark Reports E-value rather than P-value

Have Scoring and Gap-penalty values - Now algorithms to align

\checkmark Global: Needleman-Wunsch algorithm
\checkmark Local: Smith-Waterman algorithm
\checkmark Multi: CLUSTAL
\checkmark Fast search: BLAST

Needleman-Wunsch Global Alignment

\checkmark Say we have a substitution/gap scoring scheme
\checkmark How do we do an alignment?

Needleman-Wunsch Algorithm

Base conditions:

$$
\begin{aligned}
& F(i, 0)=\sum_{k=0}^{i} s\left(x_{k},-\right) \\
& F(0, j)=\sum_{k=0}^{j} s\left(-, y_{k}\right)
\end{aligned}
$$

Recurrence relation:

$$
\begin{gathered}
\text { for } 1 \leq i \leq n, 1 \leq j \leq m: \\
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)+s\left(x_{i},-\right) \\
F(i, j-1)+s\left(-, y_{j}\right)
\end{array}\right.
\end{gathered}
$$

Base condition: Only way to align first i elements of sequence x with 0 elements of y : align each element with a space (gap) in $y \Rightarrow$ score for one element is $s\left(x_{k},-\right) \Rightarrow$ total score is $F(i, 0)=$ $\sum_{k=0}^{i} s\left(x_{k},-\right)$.

Recurrence: three cases:

- Aligning x_{i} with $y_{j} \Rightarrow$ total score is $s\left(x_{i}, y_{j}\right)$ plus score of aligning $i-1$ elements of x with $j-1$ elements of y : $F(i-$ $1, j-1)+s\left(x_{i}, y_{j}\right)$.
- Aligning x_{i} with space in $y: s\left(x_{i},-\right)$ plus score of aligning $i-1$ elements of x with j elements of $y: F(i-1, j)+s\left(x_{i},-\right)$.
- Aligning y_{j} with space in $x: F(i, j-1)+s\left(-, y_{j}\right)$ by analogy.

Starting from $F(0,0)=0$, systematically fill whole matrix $(F)_{i j}$:
for $i=0$ or $j=0$, calculate new value from left-hand (upper) value.

for $i, j \geq 1$, calculate the bottom right-hand corner of each square of 4 cells from one of the 3 other cells:
keep pointer back to the cell from which it was derived \Rightarrow traceback pointer.

Example Traceback Path

Example: traceback procedure

Closer Look at Traceback

Dynamic programming matrix:

Optimum alignment scores 11:

$$
\begin{array}{rccccccc}
\mathbf{T} & - & - & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{T} & \mathbf{A} \\
\mathbf{T} & \mathbf{G} & \mathbf{C} & \mathbf{T} & \mathbf{C} & \mathbf{G} & \mathbf{T} & \mathbf{A} \\
+5 & -6 & -6 & +5 & +5 & -2 & +5 & +5
\end{array}
$$

scoring system of +5 for a match, -2 for a mismatch and -6 for each insertion or deletion. The cells in the optimum path are shown in red. Arrowheads are 'traceback pointers,' indicating which of the three cases were optimal for reaching each cell. (Some cells can be reached by two or three different optimal paths of equal score)

Gap Penalties

Gap penalty types for a gap of length g :

- Linear: $\gamma(g)=-g d$, with d being the gap weight.
- Affine: $\gamma(g)=-d-(g-1) e$, with gap-open penalty d and gap-extension penalty e. Usually $e<d$, since gaps of a few residues are expected to be almost as frequently as single gaps.
- Convex: e.g. $\gamma(g)=-d \log (g)$. Each additional space contributes less to the gap weight than the previous space.

Illustration of the max operator

Enhancements

Instead of

$$
\begin{aligned}
& D(i, j)=\max \{D(i-1, j), D(i-1, j-1), \\
& D(i, j-1)\}
\end{aligned}
$$

\checkmark "Fancier" Traceback/Alignment function

Because a straight warp is desired, a path constraint was placed to disallow two non-diagonal paths to occur in sequence. The following was implemented in the final design:

$$
\begin{aligned}
& D(i, j)=\max \{D(i-1, j-2), D(i, j-1), \\
& D(i-1, j-1), D(i-1, j), D(i-2, j-1),\}
\end{aligned}
$$

Global vs. Local Alignment

\checkmark Global does alignment over all sequence
\checkmark Local aligns smaller subsequences

Global Alignment Problem

The Global Alignment problem:
INPUT: two sequences $x=x_{1} \ldots x_{n}$ and $y=y_{1} \ldots y_{m}$ and a scoring scheme for substitutions/gaps.
TASK: Find optimal alignment.

N-W vs. S-W: major differences
\checkmark S-W limits minimum values at 0
\checkmark N-W must start trace-back in lower-right hand corner (global)
\checkmark S-W starts trace-back at highest number and goes to "diagonal 0"

Local Alignments (can have connection to global)

Each local alignment has a weight

FIND the chain with highest total weight

Smith-Waterman Algorithm for Local Alignment

\checkmark Smith-Waterman truncates all negative scores to 0 , with the idea being that as the alignment score gets smaller, the local alignment has come to an end.

Two examples

Log-odds into Matrix

-Two most used matrices are:
-PAM (Percent Accepted
 Mutation)
-Based on explicit evolutionary model
-Represents a specific evolutionary distance -BLOSUM (BLOck SUbstitution Matrices)
-Based on empirical frequencies
-Always a blend of distances as seen in protein databases

PAM (Percent Accepted Mutations) \# - (\# of mutations out of 100 AAs)

\checkmark Based on explicit evolutionary model
\checkmark PAM- 1 is a scoring system for sequences in which 1% of the residues have undergone mutation: 1 pair in a 100 residue segment
\checkmark PAM-250 represents 250% mutation, i.e., an average of 2.5 accepted mutation per residue (multiple mutations per pair) a very distant relationship
\checkmark Important to remember:
\checkmark A value less than 0 or greater than 0 indicates that the frequency is less than or greater than that expected by chance, respectively
\checkmark Smaller-numbered matrices correspond to closely related sequences
\checkmark Larger-numbered matrices correspond to more distantly related sequences

Problems with PAM

\checkmark PAM model assumes all residues are equally mutable (mutation for $\mathbf{A} \leftrightarrow G \mathbf{G}, \mathrm{~T} \leftarrow \rightarrow \mathrm{C}$ are more likely than $A \leftarrow \rightarrow T, G \leftarrow \rightarrow C$)
\checkmark Model devised using the most mutable positions rather than the most conserved positions, i.e., those that reflect chemical and structural properties of importance
\checkmark Derived from a biased set of sequences: small globular proteins available in the database in 1978

BLOSUM vs. PAM

\checkmark Most popular BLOSUM 62

BLOSUM (\# -- use seqs less than \#\% identical)
 \checkmark Important to remember:

\checkmark matrices constructed using multiple alignments of evolutionarily divergent but highly conserved proteins
\checkmark Every possible identity or substitution is assigned a score based on its observed frequences in the alignment of related proteins.
\checkmark Pairs that are more likely than chance will have positive scores, and those less likely will have negative scores
\checkmark Larger-numbered matrices correspond to more recent (less) divergence
\checkmark Smaller-numbered matrices correspond to more distantly related sequences
\checkmark By default, BLOSUM62 is often used

Two major scoring matrices

\checkmark PAM $=$ accepted point mutation
$\checkmark 71$ trees with 1572 accepted mutations, sequences with $>85 \%$ identity
\checkmark PAM1 means average of 1% change over all amino acids
$\checkmark 1$ PAM $=10 \mathrm{my}$ evolutionary distance
\checkmark BLOSUM $=$ Blocks substitution matrices
\checkmark Based on BLOCKS database (Henikoff \& Henikoff, 1992) of over 2000 conserved amino acid patterns in over 500 proteins

Example: PAM Matrices

\checkmark Point Accepted Mutations
\checkmark For Amino Acid alignment
\checkmark Biased by differing rates of mutation in different protein families
\checkmark Train on evolutionary alignments
\checkmark Develop Mutation Probability Matrix (MPM) that:
\checkmark has likelihood of sequence b being replaced by a on off-diagonal
\checkmark Has no residue change on diagonal

Example PAM Substitution matrix

$$
\begin{aligned}
& \text { C } 12 \\
& \begin{array}{lrll}
3 & 0 & 2 & \\
T & -2 & 1 & 3
\end{array} \\
& \begin{array}{lllll}
\mathrm{p} & -3 & 1 & 0 & 6 \\
\mathrm{~A} & -2 & 1 & 1 & 1
\end{array} \\
& \text { G } \quad-3 \quad 1 \quad 0 \quad-1 \quad 1 \quad 5 \\
& \begin{array}{lllllllll}
\mathrm{N} & -4 & 1 & 0 & -1 & 0 & 0 & 2 & \\
\mathrm{D} & -5 & 0 & 0 & -1 & 0 & 1 & 2 & 4
\end{array} \\
& \begin{array}{rrrrrrrrrrr}
\mathrm{E} & -5 & 0 & 0 & -1 & 0 & 0 & 1 & 3 & 4 & \\
\mathrm{O} & -5 & -1 & -1 & 0 & 0 & -1 & 1 & 2 & 2 & 4
\end{array} \\
& \begin{array}{lllllllllll}
H & -3 & -1 & -1 & 0 & -1 & -2 & 2 & 1 & 1 & 3 \\
6
\end{array} \\
& \begin{array}{lllllllllllll}
\mathrm{R} & -4 & 0 & -1 & 0 & -2 & -3 & 0 & -1 & -1 & 1 & 2 & 6
\end{array} \\
& \begin{array}{lllllllllllll}
\mathrm{K} & -5 & 0 & 0 & -1 & -1 & -2 & 1 & 0 & 0 & 1 & 0 & 3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 6
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrrrrrrr}
-2 & -1 & 0 & -1 & 0 & -1 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & 2 & 4 & 2 & 4 \\
-4 & -3 & -3 & -5 & -4 & -5 & -3 & -6 & -5 & -5 & -2 & -4 & -5 & 0 & 1 & 2 & -1
\end{array} \\
& \begin{array}{lrrrrrrrrrrrrrrrrrrr}
\mathrm{Y} & -4 & -3 & -3 & -5 & -4 & -5 & -3 & -6 & -5 & -5 & -2 & -4 & -5 & 0 & 1 & 2 & -1 & 9 & \\
\mathbf{Y} & 0 & -3 & -3 & -5 & -3 & -5 & -2 & -4 & -4 & -4 & 0 & -4 & -4 & -2 & -1 & -1 & -2 & 7 & 10
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllll}
C & S & T & P & A & G & N & D & E & \boldsymbol{Z} & \mathrm{H} & \mathrm{R} & \mathrm{~K} & \mathrm{M} & \mathrm{I} & \mathrm{~L} & \mathrm{~V} & \mathrm{~F} & \mathbf{Y} & \boldsymbol{H}
\end{array}
\end{aligned}
$$

Example Substitution Matrix for scoring: BLOSUM Matrix

| | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V |
| :--- | ---: |
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | O |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| N | -2 | 0 | 6 | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | O | -1 | -4 | -3 | -3 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 6 | -4 | -2 | -2 | 1 | 3 | -1 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 |
| S | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 |
| T | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | -2 | 0 |
| W | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | 11 | 2 | -3 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | 7 | -1 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 |

Figure 9: BLOSUM62 substitution matrix

Alignment Summary

\checkmark Distance rewards matches and penalizes substitutions/gaps
\checkmark Calculate all paths that create an alignment
\checkmark Find the optimal path for the alignment
\checkmark Applications: Find similar sequences (whether different, shortened elongated) Phylogenetic Trees (evolution)

Class Excercises

\checkmark Explore Alignment in Matlab
\checkmark http://www.mathworks.com/access/helpdesk/ help/toolbox/bioinfo/ug/fp35834dup12.html
\checkmark http://www.mathworks.com/access/helpdesk/ help/toolbox/bioinfo/index.html?/access/ helpdesk/help/toolbox/bioinfo/ug/bqk11hk-1.html

In-class Exercise

\checkmark Comparing Eyeless gene

Class Excercises

\checkmark \# Align bovine insulin precursor (P01317) and human insulin precursor (P01308) using global alignment and the default settings. Submit a printout of the resulting alignment. Give a short description (2-3 sentences) of the characteristics of the alignment produced.
\checkmark \# Reduce the gap open penalty to 1.0 and repeat the alignment. Submit a printout of the resulting alignment. Do you see any differences? If so, describe them.

Class Excercises

\checkmark \# Repeat \#1 using local alignment. Submit a printout of the resulting alignment. Do you see any differences with the global alignment? If so, describe them.
\checkmark \# Perform a global alignment of the human hemoglobin beta chain (P02023) with the hemocyanin A chain from the American tarantula (P14750). Both of these molecules are globins. Submit a printout of the resulting alignment. Give a short description (2-3 sentences) of the characteristics of the alignment produced.

End for today: Markov Chains next time

