

Why do we want to know the sample composition?

What's this good for? Types of Environmental Samples

- From the ocean: (e.g. Sargasso Sea very salty and thus nutrient deprived)
 - Venter et al. (2004) sampled it and found diverse prokaryotic life despite doubts.
- From the human body: (e.g. our gastrointestinal tract)
- From extinct, ancient animals (e.g. separate a Mammoth's DNA from the other sample's 40% of bugs and plants)

Trillions are depending on you (mostly - you're depending on them): The Human Microbiome

- You are 100 trillion cells (yours have a nucleus and therefore, you are eukaryotic)
- You contain 1000-2000 trillion Microbes (10/20-to-1) -- (they have no nucleus -- they are prokaryotic)
- Microbes make up 1-2% of your body mass
- Every gram of your intestines have -100 billion bacteria
- · Microbes in our intestines help produce certain essential vitamins such as vitamin B12.
- · Most microbes deny disease-causing microbes the foothold they need to colonise our bodies and do damage

Implications that can revolutionize technology Steven Chu, Secretary of Energy

Metagenomic Study of Termite's 'Bioreactor' Hindgut Shows Promise for Biofuel Apps

Source Nobel Prize-Wi ning Scientist Sees P May 25, 2005 -

* Can't use plants as fuel because don't know how to break it down

* Termites' guts can digest cellulose efficiently and "fighteningly quickly"

The new anti-cancer drug --**Tunicates?**

A tunicate from a Thai coral reef: a potential source of new anticancer compounds Chavanich, S.; Koeysin, P.; Viyakarn, V.; Piyatiratitivorakul, S.; Menasveta, P.; Suwanborirux, K.; Poovachiranon, S. Coral Reefs, Volume 24, Issue 4, pp.621-621

Scientists have shown how a microbe that lives inside sea squirts could be used to biosynthesize a chemical compound that may help fight cancer.

(In collaboration with the Drexel Allegheny Institute)

What makes a healthy, fertile soil?

Frends in Biotechnology /olume 26, Issue 11, November 2008, Pages 591-601

Article Figures/Tables References 🔁 PDF (977 K) doi:10.1016/j.tibtech.2008.07.004

Cite or Link Using DOI

Copyright © 2008 Elsevier Ltd All rights reserved

The metagenomics of disease-suppressive soils - experiences from the METACONTROL project

C. Pelagibacter -- most compact genome on earth

* Can't culture - only metagenomic reads

- * Estimated 20 billion billion billion Pelagibacter microbes
- * No junk
- The fewest genes "life" can get-away-with and still be efficient

(In collaboration with Oregon State University)

Microbes in Ants and Fruit Flies

* Dr. Russell's research

- * Co-evolution of arthropod gut microbes with different arthropod lineages
- * 3:30 Talk by Noah Whiteman in Stratton 113 on 'ecology and evolution of host-symbiont interactions'

Precursory Steps to Analysis

- Obtain Environmental Sample (Do not taint!)
- Sequence the Sample / DNA Microarrays (detect gene or gene expression)/ Metaproteomics (mass spectroscopy to identify proteins in sample)
- Sequencing: Traditionally (standard for 30 years), Sanger (Chain-Termination Method used)
 - -850 bp read (usually good because unique and have less "chunks" to sequence)
 - Needs an amplification step (cloning) -- SLOW

Comparing metrics and	performance of ne	xt-generation DN	A sequencers

E. R. Mardis. "The impact of next-ger

	Platform		
	Roche(454)	Illumina	SOLID
Sequencing chemistry	Pyrosequencing	Polymerase-based sequencing-by-synthesis	Ligation-based sequencing
Amplification approach	Emulsion PCR	Bridge amplification	Emulsion PCR
Paired ends/separation	Yes/3 kb	yes/200 bp	Yes/3 kb
Mb/run	100 Mb	1300 Mb	3000 Mb
Time/run (paired ends)	7 h	4 days	5 days
Read length	250 bp	32-40 bp	35 bp
Cost per run (total direct*)	\$8439	\$8950	\$17 447
Cost per Mb	\$84.39	\$5.97	\$5.81

^a Total direct costs include the reagents and consumables, the labor, instrument amortization cost and the disc storage

logy on genetics." Elsevier Trends in G

Sequencers generate fragments (sampling underlying distribution)

Problem: If billions of organisms with 100's of trillions of nucleotides (and we can sample a billion bp on a good day) --

what is Nyquist for this type of problem?

First step: Reads need to be classified Parallel of Speech Processing to Metagenomic Processing Sequenced DNA Speech ACTAGTTAGATGTCCCCTACG... Ð Signal АААААААААА ACTAGTTAGA ACTAGTTAGA Segmentation CTAGTTAGAT TAGTTAGATG Feature n/Integration Feature Extraction eductio Classification Classification Validation/ Confidence Measures Validation/ Confidence Measures

Speaker Identification Problems and their parallel - II

How do you account for the different volumes of speakers
Imbalanced amounts of Taxa

Not the nebulous "Normalization of Metagenomic data"

• How do you characterize a voice?

- Spectral Formant Features are "Fingerprint" of Voice
- Genomic features, Genes that characterize a Taxa

Speaker Identification Problems and their parallel - II

- How does the system handle varying speeds of inputs
 - Time-Frequency trade-off in Speech
 - Same with metagenomic reads -- shorter the read, the "less resolution" we have
- How can you account for imitating speech patterns?
 - Mimicking and Interference
 - Close strains and species

2007: 1.8 million species known to Science

- as a group of organisms capable of interbreeding and producing fertile offspring.
 - Does not apply to asexual single-cells

• A species is often defined

 Horizontal gene transfer violates the getting-genesonly from parents assumption (Vertical)

	Strain
	Species
(C24	and the second s
2	Genus
	Family
(C)	Order
	Under
	Class
<u>e</u>	
	Phylum
(***	Kingdom
e de	
5	Domain
(°	Life

Traditional Taxa Classification - 16S Highly Conserved **16S RNA sequences**

• 1200 bp average length

- 3' end of 16S RNA bind to mRNA to start translation
- 1. Universally distributed, allowing the comparison of phylogenetic (tree-of-life) relationships (present in all 3 kingdoms)
- 2. Core of information genes which are only weakly affected by horizontal gene transfer
- 3. Functionally highly constrained mosaics of sequence stretches ranging from conserved to more variable (most organisms will die with too high of mutation)

11 Gram Negative Bacteria 16S regions: http://www.jlindquist.com/sequence.html

Taxonomy Standards Based on 16S

- Intra-species 16S variation 3%
 - New: Can sometimes be as low as 1% and as high as 5%
- Intra-genus 16S variation -- not well studied but can be 6-9%

16S tells part of the story

- * 1200bp out of millions of bases (other parts of genome may contain clues)
- * Other parts may be laterally transferred

Extremely Mobile Elements: Horizontal Gene Transfer

• Like your neighbors drugresilience?

• Get a few plasmids from them

Type of relationship	First strain	Second strain	No. of bp differences	Reason for this example
Same genotype but different phenotypes	Mycobacterium tuberculosis ATCC 27294	M. bovis ATCC 19210 or M. africanum ATCC 25420	0	Although given names that appear to be species, the three strains are now designated subspecies and show small or no genetic difference, but there is a definite phenotypic and publological difference. See reference 43 for other examples within the mycobacteria. This rare situation is a limitation to the use of sequencing as gold standard.
Similar genotype but different phenotypes	E. coli ATCC 11775	Shigella dysenteriae ATCC 13313	3	Two high-level pathogens are genotypically close enough to be considered the same species but have kept clinically and historically important separate names.
	Streptococcus pneumoniae ATCC 33400	S. mitis ATCC 49456	3	A high-level pathogen and a commensal are genotypically very similar.
	Streptococcus bovis	S. equinus	2	Very close genogroups which are difficult to distinguish phenotypically in the clinical laboratory. However, their reported difference in lactose reaction and different niches may justify the differen names.
Similar phenotypes out different genotype	Nocardia asteroides ATCC 19247	N. farcinica ATCC 3318	13	Separate species which are relatively difficult to distinguish phenotypically are easy to distinguish by sequence.
	S. bovis ATCC 33317T	S. bovis ATCC 43143	13	Separate genogroups which are difficult to distinguish phenotypically are easy to distinguish by genotype (11).
Too distant to be the same species	Enterobacter (Pantoea. agglomerans (bg1)	E. (Pantoea. agglomerans (bg2)	27	Strains that were originally thought to be biogroups within the same species are genotypically distant enough to be considered separate genera.
Too distant to be the same genus	Clostridium tetani ATCC 19406	Clostridium innocuum ATCC 14501	About 104	Although these two organisms have been given the same genus name, the large difference (20%) means that at least one has been taxonomically misplaced. Species in the same genera should not differ by more than about 5 to 6%.
Too close to have different names	Mycobacterium duvalii	"M. valentiae"	0	Sometimes names get into the literature without full justification.
Too close to be three different genera	Enterobacter cloacae ATCC 13047	Leclercia (Enterobacter. adecarboxylata ATCC 23216	1-2	These three organisms, which have been placed in different genera, are genotypically close enoug to be considered the same species.
	E. cloacae ATCC 13047	Citrobacter werkmanii	6	
Subspecies	Streptococcus dysgalactiae subsp. dysgalactiae	Streptococcus dysgalactiae subsp. equisimilis	14/500 and 16/1,500	The difference between these two "subspecies" is greater than that between the genera above.
	Streptococcus equi subsp. equi	Streptococcus equi subsp. zooepidemicus	1/500 and 1/1,500	The only difference between the two subspecies was at bp 204.
	Staphylococcus cohnii subsp. cohnii	Staphylococcus cohnii substi, urealyticum	1/500 and 3/1.500	The difference of 0.33% was the same calculated using either the 500-bp or the 1,500-bp sequence

Multimer vs. BLAST (Composition vs. Homology)

• A Multimer is a string of length N (or what we refer to as Nmer)

• A= 1mer, AT = 2mer, ATG = 3mer, ATCG = 4mer, etc.

- Multimer approaches "count Nmer frequencies". These features characterize the full gene.
- Classifies according to Probability of finding Multimers in sequence. The more a sequence diverges, the less likely this is to happen.
- BLAST uses dynamic programming -- maximize score between two sequences. (and find sequence similarity)
- · Arguably more robust to a high-level of mutations

Least Common Ancestor

* Assigns each read to the lowest common ancestor (LCA) of the set of taxa that it hit in the comparison

Techniques for full-genomes

Features	Classifier	Published Method	
Homolooy bosed	Nearest-Neighbor	BLAST [34]	
Homology-based	Nearest-Neighbor & Last Common Ancestor	MEGAN [54]	
Composition-based		Sandberg et al. [55]	
	Naïve Bayesian	RDP classifier (16S sequences only) [56]	
		Rosen et al. [57]	
	Support Vector Machines	PhyloPythia [58]	

Processing: Identify the Content from Reads

- Identify the Kingdom, Phyla, Class, Genera, and Species distribution of a sample
- Example in Matlab (2008a) Metagenomics Demo:

Top-percent filter is used to retain only those hits for a given read r whose scores lie within a given percentage of the highest score involving r.