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n an earlier article in IEEE Signal Processing

Magazine, we discussed general issues regard-

ing genomic signal processing (GSP) as it per-

tains to diagnosis and therapy [1]. In this

article, we discuss the key research issues for
GSP. It is important to recognize that “genomic sig-
nal processing” is not a name for genomic bioinfor-
matics nor for the application of signal processing
methods in genomics. GSP concerns the processing
of genomic signals; it may be defined as the analy-
sis, processing, and use of genomic signals to gain
biological knowledge and the translation of that
knowledge into systems-based applications. We
note that research issues pertaining to GSP fit with-
in the overall challenges confronting research in the
area of multimodal biomedical systems [2].

We shall not review the basic biological con-
cepts covered in our previous article except to
recall two points. First, since cellular control
results from multivariate activity among cohorts of
genes and their products, it is not possible to sepa-
rate the analyses of DNA, RNA, and protein in the
DNA-to-RNA-to-protein information flow.
Nevertheless, the immense interaction between
levels ensures that a significant amount of the sys-
tem information is available in each of the levels,
with the current focus on RNA owing to measure-
ment considerations, in particular, gene-expression
microarrays. Second, two major goals of functional
genomics are: 1) to use genomic signals to classify
disease on a molecular level and 2) to screen for
genes that determine specific cellular phenotypes
and model their activity in such a way that normal
and abnormal behavior can be differentiated. These
goals correspond to diagnosing the presence or
type of disease and developing therapies based on
the disruption or mitigation of aberrant gene func-
tion contributing to the pathology of a disease.
Developing diagnostic tools at the RNA level
involves designing expression-based classifiers
based on genes whose product abundances indicate
key differences in cell state. Developing therapeu-
tic tools involves synthesizing nonlinear dynamical
networks, analyzing these networks to characterize
gene regulation, and designing intervention strate-
gies to modify dynamical behavior.

CLASSIFICATION
An expression-based classifier provides a list of
genes whose product abundances are indicative of
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cellular differences and can, therefore, be used to
discriminate among different phenotypes. There is a
host of microarray-based classification papers in the
literature, and we refer to the Web site
http://gsp.tamu. edu/web2/cv_paper/pdf/refs.pdf for
a large set of references. In medicine, classification
relates to diagnostic issues such as the type of can-
cer [3] or the prognosis for patient survival [4]. The
task is to design a classifier that takes a vector of
gene expression levels as input and outputs a class
label that predicts the class containing the input
vector. A classifier is designed from a sample of
expression vectors. This requires assessing expres-
sion levels from RNA obtained from different tis-
sues, determining genes whose expression levels
can be used as classifier features, and then applying
a rule to design the classifier from the sample data.
Design, performance evaluation, and application of
classifiers must take into account randomness due
to biological and experimental variability.

Figure 1 shows a graphical display in which
each row corresponds to an expression profile for a
particular gene across a sample of breast cancer
patients, red and green indicating up and down
regulation, respectively. The sample is partitioned
into three subsets: a group of patients suffering
: from BRCA1 hereditary breast cancer, a group of

S 5 patients suffering from BRCA2 hereditary breast
CAAG GTGTL’ o cancer, and a third group of patients suffering
i o from sporadic types of breast cancer. The objective
CAGAT CAAT.’ is to design a classifier based on a set of genes that
- discriminates between BRCA1l and BRCA2
3 patients. The colors of the graphical display seem
to indicate the possibility of successful classifica-
tion. For instance, the first line corresponds to the
gene KRT8, and the BRCA 1 expressions appear to
be down-regulated in comparison to the BRCA2
expressions. Figure 2 shows the BRCA1 tumors
linearly separated from the BRCA2 and sporadic
tumors in the sample using genes KRT8 and
DRPLA (atrophin-1). Pattern-recognition theory
can be used to infer information from this separa-
tion regarding the general discrimination between
the tumor classes. Classification using various
methods has been used to exploit the class-sepa-
rating power of expression data in many cancers.

The key research issues regarding expression-
based classification are centered on the large num-
ber of features (genes) and the small number of
sample points (microarrays). This disparity results
in three critical issues:

m designing a classifier from sample data that

provides good classification in general

m estimating the error of a designed classifier

when data are limited
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m selecting features from a large set of potential features.
Small samples tend to result in imprecise classifier design, poor
error estimation, and poor feature selection [5]. Substantial
research is necessary in each of these areas.

CLASSIFIER DESIGN
The probabilistic theory of pattern classification is well
developed [6]; here we sketch a bit of the theory so that we
can discuss GSP research issues.

Classification involves a feature vector X = (X1, Xo, ...,
X4 on d-dimensional Euclidean space RY composed of ran-
dom variables (features), a binary random variable Y, and a
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function (classifier) v : RY — {0, 1} to serve as a predictor of
Y, which means that Y is to be predicted by v (X). The values,
zero or one, of Y are treated as class labels. The error, e[v/], of
¥ is the probability that the classification is erroneous, name-
ly, ely] = P(WwX) #Y). X1,Xo,...,X; can be discrete or
real valued. An optimal classifier 4 is one having minimal
error &7 among all binary functions on RY. ¥, and &, are
called the Bayes classifier and Bayes error, respectively.
Classifier error depends on the probability distribution
fy(X, y), called the feature-label distribution, of the feature-
label pair (X, Y). Classification accuracy depends on the degree
to which the class conditional distributions, fyo(x) and f1(x),

are separated. The Bayes classifier is
given in terms of the label conditional

Gene Symbol probabilities by ygyx) =0 if
KRT8 P(Y =1[x) <05, and yg(x) =1 if
HSPC195 P(Y = 1]x) > 0.5. The Bayes error is
GPX4

ODC antizyme
TOBH1

expressed in a straightforward fashion
as an integral. Since in practice we do

ACTR1A not know the class conditional distri-
CSDA . . .
PEKP butions, we must design a classifier
PFKP from sample data. An obvious
E&SQA approach would be to estimate the fea-
RBL2 ture-label distribution from the data,
APEX but there is rarely sufficient data for a
ST13 good estimate. Nonetheless, good clas-
G22P1 . .

ITGBS sifiers can be obtained even when we
ESTs lack sufficient data for satisfactory dis-
PPP1CB tribution estimation.

NSEP1 .. Lo

D123 Designing a classifier ¥, from a
VLDLR random sample S, = {(X1, Y1),
MCM7 X2, Y2), ..., Xn, Yn)} of vector-label
ESTs . .
KIAAO601 pairs drawn from the feature-label dis-
DKFZP564M2423 tribution requires a classification rule
SEgH that operates on random samples to
TEAP2C yield a classifier. A classification rule is
GNAI3 a mapping of the form
(P#;g U, : [RY x {0, 1}]" — F, where F is
ESTs the family of {0, 1}-valued functions on
BRF1 R4, Given a sample S, we obtain a
;[7:238'32 designed classifier v, = ¥,(Sy)
SPHAR according to the classification rule.
CDK4 For a designed classifier yr,, there is a
ES)S(W design cost A, = &, — g4, Where ¢,
ESTs and A, are sample-dependent random
EIIEXOMS variables. The expected design cost is
CAD E[A,], the expectation being relative
MTMR4 to all possible samples. The expected
MXx2 error of Y, is decomposed according to
COX6C E _ EIA

UGTREL1 len] = eq + E[An].

ZNF161 A key difficulty with small-sample
ég\é?:g design is that E[A,] tends to be
LRP1 unacceptably large. A classification

[FIG1] Expression profiles for hereditary breast cancers: BRCA1, BRCA2, and sporadic.

rule may yield a classifier that per-
forms well on the sample data;
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however, small samples do not generally represent the distri-
bution sufficiently well to, on average, produce good classi-
fiers. The result is overfitting of the sample data. Relative to
the sample, the classifier possesses small error; but relative
to the feature-label distribution, the error may be large. The
problem is illustrated in Figure 3, where the 3-nearest-
neighbor (3NN) rule is applied to samples from two equal-
variance circular Gaussian class conditional distributions. At
each point x, the 3NN classifier gives the majority value of
the three nearest neighbors to x. Figure 3(a) and (b) shows
the 3NN classifier for two 30-point samples, and Figure 3(c)
and (d) shows the 3NN classifier for two 90-point samples.
Note the greater overfitting of the data for the 30-point sam-
ples. In particular, note the greater difference in the two 30-
point designed classifiers as compared to the difference
between the two 90-point classifiers and how close the latter
are to the Bayes classifier given by the vertical line. The over-
fitting problem is not necessarily mitigated by applying an
error-estimation rule to the designed classifier to see if it
“actually” performs well; this is due to the fact that when only
a small amount of data is available, error-estimation rules are
very imprecise and this imprecision tends to be worse for
complex classification rules. Hence, a low error estimate is
not sufficient to overcome the large expected design error
generated by using a complex classifier with a small data set.
We need to consider classification rules that are constrained
so as to reduce overfitting.
Constraining classifier design

Elepcl =4+ Ac+E[Ancl.

The constraint is beneficial if and only if the cost of constraint is
less than the decrease in expected design cost. The dilemma:
strong constraint reduces £ [Aj, ¢] at the cost of increasing ec.
For a graphical illustration, consider a classification rule
for which the expected design error never increases as sample
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[FIG2] Linear classification of BRCA1 from BRCA2 and sporadic
cancers using two genes.

means restricting the functions from
which a classifier can be chosen to a
class C. This means trying to find an
optimal constrained classifier,
Yc € C, having error gc. Con-
straining the classifier can reduce the o

expected design error, but at the cost o
of increasing the error of the best pos-
sible classifier. Since optimization in
C is over a subclass of classifiers, the

00

o
)

error gc of ¢ will typically exceed
the Bayes error, unless the Bayes clas- @

sifier happens to be in C. This cost of
constraint (approximation) is 8

Ac = ec — ¢4. A classification rule o
yields a classifier v, ¢ € C with error s ° °%
enc, and epc>ec > e4. Design o 0® o ©
error for constrained classification is
Ap.c = en.c — ec. For small samples, ° 0 ©
this can be substantially less than A,
depending on the constraint and the
rule. The error of the designed con-

strained classifier is decomposed as
en.c = &g+ Ac+ Ap.c. The expect- (©
ed error of the designed constrained
classifier, which is our main concern,
can be decomposed as

(d)

[FIG3] 3NN classification applied to two equal-variance circular Gaussian class conditional
distributions: (a) for a 30-point sample, (b) for a second 30-point sample, (c) for a 90-point
sample, and (d) for a second 90-point sample.

IEEE SIGNAL PROCESSING MAGAZINE [49] NOVEMBER 2005



Ele,]

Ele,cl

€

&4

[FIG4] Expected error for unconstrained and constrained
classification as a function of sample size.

sizes increase: E[Api1] < E[An] and E[Apy1.c] < ElAncl.
In Figure 4, the axes correspond to sample size and error. The
horizontal dashed lines represent ¢c and ¢4, and the decreas-
ing solid lines represent £ [e,,, c] and E'[&,]. If n is sufficiently
large, then E[g,] < Elen.cl; however, if n is small, then
E'[en] > E'len.c]. The point Ny at which the solid lines cross is
the cut-off: for n > Ny, the constraint is detrimental; for
n < Ny, it is beneficial.

Much effort has gone into bounding £ [A, c]. A celebrated
theorem of pattern recognition provides bounds for £[A,, ¢] for
the empirical-error rule, which chooses the classifier in C that
makes the least number of errors on the sample data [7], [8].
Classical bounds are of the form E[A, c] < rc+/log n/n, where
Ac is related to the complexity of the classifiers in C. Greater
classifier complexity corresponds to a greater ability to cut up
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[FIG5] Effect of noise injection on classifier design. (a) No spreading.
(b) Spreading with o = 0.3. (c) Spreading with o = 0.6. (d) Spreading

witho = 1.0.

the feature space, and A¢ is larger for greater complexity.
Unfortunately, such bounds tend to lack practical import for
GSP because they require large samples to make them useful.
For instance, in the bound just cited, for a neural network with
ten inputs and ten neurons, the bound exceeds 1 for n =5,000.

REGULARIZATION
Rather than design a classifier precisely according to some clas-
sification rule when the sample is small, it can be beneficial to
regularize the sample data or the parameters estimated from
the data; by regularization we mean some alteration of the data
or modification of the estimation rule for the parameters.
Linear classification rules yield a decision boundary that is a
hyperplane in the feature space. Owing to their low complexity,
they tend to require less data for design and error estimation.
Numerous classification rules yield linear decisions, and they can
have very different properties. We confine ourselves to linear dis-
criminant analysis. If the class conditional densities are Gaussian
and equally likely, then the Bayes classifier is determined by a
discriminant Q(x) involving the covariance matrices and means
for the classes, with v (x) = 1 if and only if Q(x) > 0. The deci-
sion boundary is quadratic, thereby leading to the name quadrat-
ic discriminant analysis (QDA). If the classes possess a common
covariance matrix, then the decision boundary is a hyperplane,
and the method is called /inear discriminant analysis (LDA). In
practice, QDA and LDA are applied by estimating the covariance
matrices and mean vectors with the sample covariance matrices
and sample means. Application does not require Gaussian class
conditional densities; however, better performance is expected
when they are close to Gaussian. Relative to QDA, a simple regu-
larization is to apply LDA when the covariance matrices are not
equal. This means estimating a single covariance matrix by
pooling the data. This reduces the number of parameters to
be estimated and increases the sample size relative to the
smaller set of parameters.

A softer approach than strictly going from QDA to LDA is
to shrink the individual covariance estimates in the direction
of the pooled estimate. This can be accomplished by introduc-
ing a parameter o between zero and one to arrive at weighted
covariance matrices for which QDA results from « = 0 and
LDA from o = 1, with different amounts of shrinkage occur-
ring for 0 < a < 1 [9]. To get more regularization while pro-
ducing little bias, one can shrink the regularized sample
covariance matrix towards the identity multiplied by its aver-
age eigenvalue [10]. This has the effect of decreasing large
eigenvalues and increasing small eigenvalues, which offsets
the phenomenon that large eigenvalues of the sample covari-
ance matrix are biased high and small eigenvalues are biased
low, a situation that is accentuated for small samples.

A general procedure is to regularize the data itself
through noise injection. This can be done by “spreading” the
sample data by generating synthetic data about each sample
point. This creates a large synthetic sample from which to
design the classifier while at the same time making the
designed classifier less dependent on the specific points in
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the small data set. For instance, one may place a circular
Gaussian distribution at each sample point, randomly generate
points from each such distribution, and then apply a classifica-
tion rule. This approach has been extensively examined relative
to LDA [11]. An immediate advantage is that noise injection can
be used in strictly data-driven iterative classifier designs. A
spherical distribution need not be employed; indeed, it has been
demonstrated that it can be advantageous to base noise injection
at a sample point based on the nearest neighbors of the point
[11]. Figure 5 illustrates noise injection with different spreads
for LDA. The procedure can be posed analytically in terms of
matrix operations for linear classification, and this is critical for
situations in which a large number of feature sets must be
examined, as is often the case for microarray-based classification
[12]. Noise injection can take a different form in which the sam-
ple data points themselves are perturbed by additive noise rather
than new synthetic points being generated. This approach has
been used in designing neural networks, in particular, where
owing to a small sample, the same data points are used repeat-
edly [13], [14]. Research is required to better understand the
effects of noise injection and gain an appreciation of how it
should be applied in various circumstances. An important ques-
tion to answer is: What should be the distribution of the noise,
in particular, its variance and shape?

Since increasing classifier complexity tends to result in
increased design cost, rather than simply applying estimated
errors to rank classifiers, one can penalize classifiers by adding a
complexity term p(72) to arrive at a new penalized error that is a
sum of the error and a complexity penalty £,[v] + p(n). The idea
is to achieve complexity regularization relative to the classifier
class by having a measure that incorporates both error and classi-
fier complexity. Put another way, from a collection of classifier
models, we want to choose a model most suited for the amount of
data. One approach is structural risk minimization, in which, rel-
ative to a sequence of constrained classes, a classifier is chosen
from each class by minimizing the estimated error on the sample
data and then choosing among these the one possessing minimal
penalized error, where in each case the penalty is relative to the
class containing the classifier [8], [15]. There are practical difficul-
ties involved because some empirical measure must be employed
[16], [17]. Another approach is to use the minimum-description-
length (MDL) principle, which says that, given the data and a class
of models, select the model that achieves the shortest code length
for the data and model [18]. Using the MDL principle, complexity
regularization can be achieved by replacing error minimization
with minimization of a sum of code lengths—one relative to
encoding the error and the other relative to encoding the classifi-
er description—in an effort to balance increased error and
increased model complexity. It has been used in the context of
gene prediction, which is important to regulatory networks [19].

There is active research in complexity regularization, includ-
ing application to genomic data. Since complexity regulariza-
tion can be used for network design (relative to network
complexity), it holds promise for genomic modeling, especially
since error estimation is so problematic.

FEATURE SELECTION

Owing to the thousands of probes on a microarray, each yielding
an expression measurement that is a potential feature for classi-
fication, massive feature reduction is an indispensable aspect of
expression-based classification. Due to the lack of monotonicity
for estimated errors, one cannot simply apply some naive
approach and select a large number of features, assuming the
more the better. The Bayes error is monotone since, if A and B
are feature sets with Bayes errors g4 and &g, respectively, and
A C B, then ep < ¢4. However, if ¢4 , and ep,, are the corre-
sponding errors resulting from designed classifiers on a sample
of size n, then E'[ep,,] may exceed E[e4 ,]. Indeed, it is com-
monplace for the expected design error to decrease and then
increase for increasingly large feature sets. This is called the
peaking phenomenon [20], [21]. It is illustrated in Figure 6,
where the horizontal axis corresponds to a sequence of features,
X1, X2, .. , and the vertical axis gives the error of the
optimal classifier for the given features. As indicated, for d fea-
tures, the Bayes error ¢4 continues to decline, but the expected
error, E'[eq ], of the designed classifier goes down and then
begins to rise.

A major stumbling block is the combinatorial nature of fea-
ture selection. To select a subset of & features from a set of n
potential features and be assured that it provides an optimal
classifier with minimum error among all optimal classifiers for
subsets of size £, all A-element subsets must be checked unless
there is distributional knowledge that mitigates the search
requirement, a condition rarely satisfied in practice [22].

In light of the peaking phenomenon, given a set of features,
what is the optimal number of features? The question is compli-
cated because it depends on the classification rule, feature-label
distribution, and sample size. Figure 7 illustrates peaking in
terms of sample size n and the number d of features. The surface
gives the average error of designed LDA classifiers in terms of d
and n based on two Gaussian class conditional distributions pos-
sessing the same covariance matrix. The features are slightly cor-
related, and we see that peaking occurs with very few features for
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[FIG6] Peaking phenomenon: expected error and Bayes error as
functions of the number of features.
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sample sizes 30 and below, but then exceeds 30 features for sam-
ple sizes above 90. Matters are different in Figure 8, where the sit-
uation is the same except that the features are highly correlated.
Here, even with a sample size of 200, the optimal number of fea-
tures is only eight. The behavior in Figures 7 and 8 corresponds
to the usual understanding of the peaking phenomenon. Figure 9
should make one wary of hasty generalizations. It shows the same
error averages for designed 3NN classifiers for two Gaussian class
conditional distributions possessing different covariance matrices,

Error Rate

[FIG7] Peaking phenomenon for LDA with slightly correlated features.
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[FIG8] Peaking phenomenon for LDA with highly correlated features.

in which case the optimal classifier is quadratic. Here, the optimal
feature size first decreases for small samples and then remains
essentially constant (ignoring the small wiggles owing to simula-
tion). The optimal number does not go beyond where it is at sam-
ple size 100 until the sample size is in the thousands. A large
simulation study provides optimal feature surfaces for a number
of classification rules and feature-label distributions [23].
Although we will introduce some analytic work concerning the
optimal number of features for QDA, generally there is little
understanding regarding peaking and
very little mathematical analysis that
addresses the topic. Given its impor-
tance for small-sample classification,
much investigation is warranted.

In our preceding discussion on the
optimal number of features, we knew
the distributions and were able to
order the features so as not to have to
consider all possible feature sets. In
practice, there is typically no way
around the combinatorial problem,
and one has to resort to a feature-
selection algorithm. In principle, a
full exhaustive search can be mitigat-
ed by using a branch and bound fea-
ture-selection algorithm that takes
advantage of the monotonicity proper-
ty to obtain an optimal solution [24].
However, worst-case performance can
be exponentially complex and error
estimation must be used, thereby los-
ing monotonicity, a problem exacer-
bated by small samples. Suboptimal
approaches need to be considered.
The most obvious approach is to con-
sider each feature by itself and choose
the & features that perform individu-
ally the best or perhaps choosing
those most correlated with the class-
es. While easy, this method is subject
to choosing a feature set with a large
number of redundant random vari-
ables. Also, it suffers because features
that perform poorly individually may
do well in combination.

Feature selection is often split into
two categories: the filter and wrapper
methods. In the filter method, fea-
0 tures are selected without regard for

classifier design, for instance, by
choosing features most correlated
with the labels or via mutual informa-
tion. In the wrapper method, features
are selected in conjunction with clas-
sifier design. When there is a very
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large number of features, such as in the case of gene expressions
on a microarray, the methods are used in conjunction. First, a
filtering method is used and then some selection method involv-
ing classification is employed on the preliminarily reduced set.
When using a filter method, there is the danger of selecting
many redundant features and also missing features that perform
poorly in isolation but work well in combination.

A common approach to suboptimal feature selection is
sequential selection, either forward or backward, and their vari-
ants. Sequential forward selection (SFS) begins with a small set
of features (perhaps one), and iteratively builds the feature set.
Where there are & features, x1, x2, ..., X%, in the growing
feature set, all feature sets of the form {x1, x2, ..., xt, w, } are
compared and the best one is chosen to form the feature set of
size k + 1. A problem with SFS is that there is no way to delete a
feature adjoined early in the iteration that may not perform as
well in combination as other features. The SFS look-back algo-
rithm aims to mitigate this problem by enabling deletion. When
there are k features, x1, x2, ..., Xz, in the growing feature set,
all feature sets of the form {x1, xo, ..., X, w, 2} are compared
and the best one is chosen. Then all (k + 1)-element subsets are
checked to allow the possibility of deleting one of the earlier
chosen features, the result being the &+ 1 features that will
form the basis for the next stage of the algorithm. Flexibility can
be added by considering sequential forward floating selection
(SFFS), where the number of features to be adjoined and deleted
is not fixed but is allowed to “float” [25].

For a large number of potential features, feature selection is
problematic, and the best method depends on the circumstances.
Evaluation of methods is generally comparative and based on
simulations; SFFS appears to be the best in practice [26], [27].
Among the key research issues for feature-selection algorithms
are mathematical analyses of their performances, ground-truth
comparisons, their behavior for differ-
ent classifiers and feature-label distri-
butions, the impact of error
estimation on error-based decisions
within the algorithm (which we will
discuss shortly and is very important

0.36 -
in small-sample settings), and valida-
tion (Does an algorithm outperform Uietag
SFFS?). Owing to the importance of 0.32
feature selection in selecting genes for 0.3

classification and for prediction in the
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tion. By this we do not mean the pro-
posal of more algorithms based on
unsubstantiated heuristics. What is
required is careful work on both the
construction and analysis of feature-
selection procedures, taking into
account the problems caused by
extremely large numbers of features
and very small samples.

When considering feature selection, it must be recognized
that feature selection is part of the classification rule and, as
such, it is a form of complexity regularization. For instance, in
the case of gene selection, a normalized maximum likelihood
method has been proposed for feature selection in Boolean mod-
els which involves restating the classification problem as a mod-
eling problem in terms of a class of parametric models [28]. The
method is related to the MDL principle and has immediate
application in model selection for gene regulatory networks.
Since feature selection is part of the classification rule, if one
has D features and chooses d of them, then the classification
rule is being applied to D-dimensional space and this must be
taken into account when treating the complexity of classifier
design. Moreover, if an error estimation method relates to
the classification rule, then one must incorporate feature selec-
tion into the error-estimation procedure (see cross-validation
error estimation).

ERROR ESTIMATION
Error estimation is critical for classification because the error
of a classifier determines its worth. Thus, the precision of error
estimation is extremely important. The issue is complicated
because the precision of an error estimator depends on the clas-
sification rule, feature-label distribution, number of features,
and sample size. Error estimation is problematic for GSP owing
to performance degradation with small samples. Achieving bet-
ter small-sample error estimation is a major GSP research issue.
If a classifier vy, is designed from a particular sample of size
n, then the error of the classifier relative to the sample is given
by e, = E[|Y — ¥»(X)|], where the expectation is taken rela-
tive to the feature-label distribution. In practice, the feature-
label distribution is unknown and the error must be estimated.
If there is an abundance of sample data, then it can be split
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[FIG9] Peaking phenomenon for 3NN.
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into fraining and fest data. A classifier is designed on the train-
ing data, and its estimated error is the proportion of errors it
makes on the test data. We do not consider this approach
because holding out data with a small sample leaves less data
available for design, thereby resulting in a less effective design.
We only consider error estimators based on the sample from
which the classifier is designed.

One approach is to design a classifier v, from the sample
and estimate &, by applying ¥, to the sample. The resubstitu-
tion estimate, ¢}, is the fraction of errors made by ¥, on the
sample. The resubstitution estimator is typically low biased,
meaning E[e]?] < Eley], and this bias can be severe for small
samples depending on the complexity of the classification rule.

Cross-validation is a resampling strategy in which classifiers
are designed from parts of the sample, each is tested on the
remaining data, and &, is estimated by averaging the errors. In
k-fold cross-validation, the sample S,, is partitioned into 4 folds
Sy, for i=1,2,..., k. Each fold is left out of the design
process and used as a test set, and the estimate s,ﬁv(k) is the aver-
age error committed on all folds. A k-fold cross-validation esti-
mator is unbiased as an estimator of Elepn k], meaning
E[e2P] = Elen_nykl, where &,k is the error arising from
design on a sample of size n — n/k. The special case of n-fold
cross-validation yields the leave-one-out estimator, éfl"", which
is an unbiased estimator of £ [g,_1].

Cross validation is likely the most popular error estimator in
the microarray literature. Unfortunately, it is often used with
neither justification nor mention of its serious shortcomings
with small samples. While not suffering from severe bias, cross-
validation has large variance in small-sample settings; there-
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[FIG10] Original and several surrogate classifiers for CART.

fore, its use is problematic [6]. Focusing on the unbiasedness of
leave-one-out estimation, E[éfl""] =FE|ep—1], so that
E[éﬂz"o — &l ~ 0. Thus, the expected difference between the
error estimator and the error is approximately zero. But we are
not interested in the expected difference between the error esti-
mator and the error; rather, we are interested in the precision of
the error estimator in estimating the error. Our concern is the
expected deviation, E[|§£Z"° — &nl], and unless the cross-valida-
tion variance is small, (which it is not for small samples), this
expected deviation will not be small. By considering the deviation
distributions for several error estimators, it is seen that cross-val-
idation generally performs poorly for small samples [29].

The difficulty with cross-validation is illustrated in Figure 10,
which shows decision regions obtained from a sample using the
method of classification and regression trees (CART). This is a
classification-tree approach that iteratively partitions the feature
space by perpendicular splits based on an “impurity function”
and defines the resulting classifier on each leaf (cell) of the par-
tition by majority vote. Figure 10(a) shows the classifier
designed from the sample data, and Figure 10(b)—(d) shows a
few surrogate classifiers designed from the sample after a point
(circle) has been removed. Note how different the surrogates are
from the designed classifier. The leave-one-out estimator is
obtained from averaging the resubstitution errors of all the sur-
rogates, many of which have little relation to the actual classifi-
er whose error we desire. Although cross validation does not
perform well for small samples, it can be beneficial for modest-
sized samples in which one wishes to use all of the data for
design so as to obtain the best possible classifier. For larger sam-
ples, the variances of the cross-validation estimators get smaller
and better performance is achieved. Finally, recalling our dis-
cussion of feature selection, since cross validation estimates the
expected error owing to the classification rule, feature selection
must be repeatedly done each time points are left out in the esti-
mation procedure.

Bootstrap is a general resampling strategy that can be
applied to error estimation [30]. A bootstrap sample consists of
n equally likely draws with replacement from the original sam-
ple S,,. Some points may appear multiple times, whereas others
may not appear at all. For the basic bootstrap estimator, éf’z, the
classifier is designed on the bootstrap sample and tested on the
points left out. This is done repeatedly, and the bootstrap esti-
mate is the average error made on the left-out points. Q“Z tends
to be a high-biased estimator of £[g,], since the number of
points available for design is on average only 0.632n. The .632
boolstrap estimator tries to correct this bias via a weighted aver-
age of éz and resubstitution [31]

80632 — (.3687° + 0.6328.

In resubstitution, there is no distinction between points
close to and far from the decision boundary. The bolstered-
resubstitution estimator is based on the heuristic that, relative
to making an error, more confidence should be attributed to
points far from the decision boundary than points close to it
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[32]. This is achieved by placing a distribution, called a bolster-
ing kernel, at each point and estimating the error by integrat-
ing each bolstering kernel over the decision region for which
the point does not properly belong and then averaging the
integrals. A key issue is the amount of bolstering (spread of the
bolstering kernels), and a method has been proposed to com-
pute this spread based on the data. Figure 11 illustrates the
error for linear classification when the bolstering kernels are
uniform circular distributions. When resubstitution is heavily
low-biased, it may not be good to spread incorrectly classified
data points because that increases the optimism of the error
estimate (low bias). The semibolstered-resubstitution estimator
results from not bolstering (no spread) for incorrectly classified
points. Bolstering can be applied to any error-counting estima-
tion procedure. Bolstered leave-one-out estimation involves bol-
stering the resubstitution estimates on the surrogate classifiers.

To demonstrate small-sample error-estimator performance,
we provide simulation results for the empirical distribution of
&n — &p, in which the error estimator &, is one of the following:
resubstitution (resub), leave-one-out (loo), ten-fold cross-
validation with ten repetitions (cv10r), .632 bootstrap (b632),
bolstered resubstitution (bresub), semibolstered resubstitution
(sresub), or bolstered leave-one-out (bloo). Bolstering utilizes
Gaussian bolstering kernels. The simulations use data from a
study that analyzes a large number of microarrays prepared with
RNA from breast tumor samples from each of 295 patients [4].
Of the 295 microarrays, 115 belong to the “good-prognosis”
class and 180 belong to the “poor-prognosis” class. The simula-
tions use log-ratio gene-expression values associated with the
top five genes, as ranked by a correlation-based measure. For
each case, 1,000 observations of size n =20 and n = 40 are
drawn independently from the pool of 295 microarrays.
Sampling is stratified, with half of the sample points drawn from

[FIG11] Bolstered resubstitution error for linear classification and
circular uniform bolstering kernels.

each of the two prognosis classes. The true error for each obser-
vation of size n is approximated by a holdout estimator, whereby
the 295 — n sample points not drawn are used as the test set (a
good approximation of the true error, given the large test sam-
ple). This allows computation of the empirical deviation distri-
bution for each error estimator using the considered
classification rules. Since the observations are not independent,
there is a degree of inaccuracy in the computation of the devia-
tion distribution; however, for sample sizes 7 = 20 and n = 40
out of a pool of 295 sample points, the amount of overlap
between samples is small. Figures 12 and 13 display plots of
the empirical deviation distributions for LDA and CART,
respectively, obtained by fitting beta densities to the raw data.
Better performance is indicated by a narrow distribution cen-
tered close to zero. Note the low bias of resubstitution and the
high variance of the cross-validation estimators. These are
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[FIG12] Beta-fit deviation distributions for LDA with sample sizes n = 20 and n = 40.
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generally outperformed by the bootstrap and bolstered esti-
mators; however, specific performance advantages depend
heavily on the classification rule.

Computation time is important when judging an error esti-
mator. Of those in the preceding demonstration, resubstitution
is the fastest estimator. Leave-one-out is fast for a small num-
ber of samples, but its performance quickly degrades as the
number of samples increases. The ten-fold cross-validation and
bootstrap estimators are the slowest. Bolstered resubstitution
can be hundreds of times faster than the bootstrap estimator.

In addition to constructing gene-expression classifiers, one
may desire to simply rank gene sets based on their ability to
classify phenotypes. Since there may be many gene sets that
can provide good discrimination, one may wish to find sets
composed of genes for which there is evidence of their molecu-
lar relationship with the phenotype of interest. The idea is that
good feature sets may provide good candidates for diagnosis
and therapy. Given a family of gene sets discovered by some
classification rule, the issue is to rank them based on error.
Thus, a natural measure of worth for an error estimator is its
ranking accuracy for feature sets [33]. The measure will depend
on the classification rule and the feature-label distribution.
Consider two 20-dimensional, unit-variance spherical Gaussian
class conditional distributions with means at da and —da,
where a = (a1, a2, ..., an),|al =1, and § > 0 is a separation
parameter. The Bayes classifier is a hyperplane perpendicular to
the axis joining the means. The best feature set of size & corre-
sponds to the A largest parameters among {ai, ao, ..., a,}. We
consider all feature sets of size three. For each sample of size
30, we obtain the LDA, 3NN, and CART classifiers, and for each
of these we obtain the true error from the distribution and esti-
mated errors based on resubstitution, cross-validation, boot-
strap, and bolstering. We use two measures of merit. Each
compares ranking based on true and estimated errors, under

the condition that the true error is less that ¢. R{((z‘) is the
number of feature sets in the truly top K feature sets that are
also among the top K feature sets based on error estimation. It
measures how well the error estimator finds top feature sets.
Rg (f) is the mean-absolute rank deviation for the K best fea-
ture sets. Figure 14 shows graphs obtained by averaging these
measures over many samples. Cross-validation is generally
poorer than .632 bootstrap, whereas the bolstered estimators
are generally better.

When selecting features via an algorithm like SFFS that
employs error estimation within the algorithm, one should
expect the choice of error estimator to affect feature selection to
a degree that is dependent on the classification rule and fea-
ture-label distribution [34]. To illustrate the issue, we consid-
er the spherical 20-dimensional Gaussian class conditional
distributions used to exhibit feature-set ranking, SFS and SFFS
feature selection, and the LDA and 3NN rules. We consider
selecting four features from samples of size 30. Table 1 gives the
average true errors of the feature sets found by SFS, SFFS, and
exhaustive search using various error estimators. The top row
gives the average true error when the true error is used in fea-
ture selection. This is for comparison purposes only because, in
practice, one cannot use the true error during feature selection.
Note that both SFS and SFFS perform close to exhaustive
searches when the true error is used. Of key interest is that the
choice of error estimator can make a greater difference than the
manner of feature selection. For instance, for LDA, an exhaus-
tive search using leave-one-out results in average true error
0.2224, whereas SFFS using bolstered resubstitution yields an
average true error of only 0.1918. SFFS using semibolstered
resubstitution (0.2016) or bootstrap (0.2129) is also superior
to exhaustive search using leave-one-out, although not as good
as bolstered resubstitution. In the case of 3NN, once again
SFFS with either bolstered resubstitution, semibolstered
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[FIG13] Beta-fit deviation distributions for CART with sample sizes n = 20 and n = 40.
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[FIG14] Feature-set-ranking for LDA, 3NN, and CART.

resubstitution, or bootstrap outperforms a full search using
leave-one out. Extensive study is needed to gauge the impact of
estimation on the many proposed methods of feature selection.

ANALYTIC RESULTS

The advent of massively parallel implementation has in
recent years made possible broad simulation studies for key
issues such as design cost, feature optimality, and compara-
tive error estimation. Nevertheless, analytic results are desir-
able, and here much work remains. As noted previously,
there is a great deal of literature on bounding the design
cost, and there is much current activity in this field [35].
Moreover, historically there has been substantial work on
obtaining exact representations and approximations for sam-
ple size and dimensionality issues, the focus being on QDA
and LDA, owing to the form of their discriminants [36]. For
instance, for LDA with Gaussian class conditional distribu-
tions possessing the identity covariance matrix and equal
class probabilities, and estimation using the

sample moments, there exists an approximation

whose accuracy depends on the sample size and

the number of features for £[A, c| that shows

ElAncl = 0(d?/n) [37]. Based on simulation,

the approximation appears to be decent if the TRUE
sample size modestly exceeds the number of fea-  resug
tures; however, this is often not the case with  LOO

. N . . cvs
expression-based classification. In this section we  gg3>
consider two recent analytic results that have EEESBS

consequences for estimating the optimal number

cviOr mm b632 EE bresub mm

sresub W bloo mm

of features and for comparing the performance of error esti-
mators in the case of small samples.

To apply QDA to sample data, the discriminant Q(x) is
replaced by its sample-based estimate, Q,(x), which is a ran-
dom function whose distribution describes its probabilistic
behavior. Recently, stochastic representations have been
derived for Qp ,(x) and Q1 ,(x), the conditional discriminants
given class 0 and class 1, respectively [38]. These distributions
can be used to study issues related to small-sample QDA. For
instance, although the distributions are quite complicated, one
can exactly express their means and variances, and thereby
approximate them with Gaussian distributions to obtain
approximate analytic solutions for the optimal number of fea-
tures in small-sample settings [39].

Although simulation studies with regard to error estimation
are beneficial, one would like to attain analytic results regarding
estimator performance. We consider the root-mean-square (RMS)
difference between the error and the error estimate, given by

LDA 3NN

EXHAUST SFS SFFS EXHAUST SFS SFFS

0.1440 0.1508 0.1494 0.1525 0.1559 0.1549
0.2256 0.2387 0.2345 0.2620 0.2667 0.2543
0.2224 0.2403 0.2294 0.2301 0.2351 0.2364
0.2289 0.2367 0.2304 0.2298 0.2314 0.2375
0.2190 0.2235 0.2129 0.2216 0.2192 0.2201
0.1923 0.2053 0.1918 0.2140 0.2241 0.2270
0.1955 0.2151 0.2016 0.2195 0.2228 0.2230
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RMS(8,) = /E |20 — enl?],

where the expectation is with respect to the joint distribution
of the random sample and both the classification rule and fea-
ture-label distribution are implicit in the notation. Consider
multinomial discrimination, for which the feature compo-
nents are random variables whose range is the discrete set
{0,1,...,b—1}. This corresponds to choosing a fixed parti-
tion in RY with b cells. The histogram rule assigns to each cell
the majority label in the cell. In the case of this rule, for resub-
stitution and leave-one-out, there exist distribution-free upper
bounds for the RMS [6]. As in the case of design-cost bounds,
these tend to be impractical for small samples.

In the case of the histogram rule for multinomial discrimi-
nation, there exist exact analytic formulations of the RMS for
resubstitution and leave-one-out [40]. Rather than just give
some anecdotal examples of the RMS for different distributions,
we consider a parametric Zipf model, which is a power-law dis-
crete distribution where the parameter controls the difficulty of
classification. Figure 15 shows the RMS as a function of the
expected true error computed for a number of distinct models of
the parametric Zipf model for n = 40 and b = 8. Their perform-
ances are virtually the same (resubstitution slightly better) for
Ele,] < 0.3, which practically means equivalent performance
in any situation where there is acceptable discrimination. For
b =4 (not shown), resubstitution outperforms leave-one-out
across the entire error range and for b6 = 16 (not shown) the
complexity of the model in comparison to the sample size is
such that resubstitution is very low-biased and leave-one-out
has better performance. If we fix the expected error at a value
giving modest discrimination, £ [e,] = 0.2, and consider dif-
ferent sample sizes, then resubstitution outperforms leave-
one-out for b<7,b6<8,and b <9 at n =20, n =40, and
n = 60, respectively. If we think of the Boolean model for gene
regulation (to be discussed), then b = 2,4, 8, and 16 corre-
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[FIG15] Analytic error curves for resubstitution and leave-
one-out cross-validation for multinomial discrimination with
eight cells.

spond to connectivity one, two, three, and four, respectively,
connectivity being the number of genes that predict the state
of any other gene in the network. Since in practice connectivi-
ty is often bounded by three, this means that, relative to leave-
one-out, resubstitution can provide equivalent estimation of
prediction error at practical error levels for three predictors
and better prediction error at all error levels for one and two
predictors. Given the need to sometimes estimate the errors of
tens of thousands of predictor functions, there is an enormous
computational benefit in using resubstitution, in addition to
the better prediction for one and two predictors.

Besides bounding the RMS, one might desire confidence that
the true error is less than some function of the resubstitution
error, which means finding expressions of the form

P(en < h (8], n,8)) =1-3.

This problem has also received much attention [41].

While the literature on bounds is rich, the bounds are typi-
cally irrelevant to GSP because GSP generally deals with small
samples. Certainly, improved bounds would be useful, but
numerous bounds have been shown to be tight ; in these cases,
there is no hope to make them useful for GSP. We believe that
what is required is more attention to exact representations and
approximations suitable for small samples. No doubt, many of
these issues are difficult, but the rewards relating to model
choice and validity will be well worth the effort.

CLUSTERING

A cluster operator takes a set of data points and partitions the
points into clusters (subsets). Clustering has become a popular
data-analysis technique in genomic studies using
gene-expression microarrays. The process of time-series clus-
tering groups together genes whose expression levels exhibit
similar behavior through time. Similarity indicates possible
coregulation. Another way to use expression data is to take
expression profiles over various tissue samples and then cluster
these samples based on the expression levels for each sample.
This approach offers the potential to discriminate pathologies
based on their differential patterns of gene expression.

Figure 16 shows a clustering of gene-expression time-course
profiles, where the clusters have been found by matching with
the templates in the second column. These profiles reflect the
response to androgen deprivation therapy for advanced prostate
cancer, with the profiles in the third column corresponding to
59 androgen-responsive genes; the known androgen receptor
targets have their names in red [42].

Figure 17 shows a sample of 31 patients (columns) suffer-
ing from B-cell lymphoma and the expression profiles (rows)
of 25 genes across the sample. The samples have been hierar-
chically clustered and the clusters correspond perfectly to two
types of lymphoma, DLBCL and MCL [43]. The genes have
also been hierarchically clustered, and it appears from the fig-
ure that the red-labeled genes are up-regulated for MCL and
down-regulated for DLBCL, whereas the green-labeled genes
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are up-regulated for DLBCL and down-regulated for MCL. be accomplished by a two-gene feature set, one red-labeled
Thus, the different gene clusters seem to “classify” the lym- and one green-labeled.

phomas. Perhaps more precisely, the clustering might provide Despite the popularity of clustering, one must pose the
feature selection in the sense that actual classification might epistemological question: What is the scientific content of the
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[FIG16] Template-based clustering of gene-expression time-course profiles reflecting the response to androgen deprivation therapy for
advanced prostate cancer.
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output of a clustering algorithm? With classification, two funda-
mental characteristics are exhibited: 1) classifier error can be
estimated under the assumption that the sample data arise from
an underlying feature-label distribution, and 2) given a family of
classifiers, sample data can be used to learn the optimal classifi-
er in the family. A classifier is a mathematical model that pro-
vides a decision procedure relative to real-world measurements.
The model represents scientific knowledge to the extent that it
has predictive capability. As with any scientific model, the classi-
fier has two parts: the mathematical structure and the mecha-
nism by which it is tested, the purpose of testing (error
estimation) being to measure the goodness of the model.
Historically, clustering has generally lacked both fundamental
characteristics of classification. In particular, it lacks inference
in the context of a probability model. Jain et al. write,
“Clustering is a subjective process; the same set of data items
often needs to be partitioned differently for different applica-
tions” [44]. In the context of gene-expression microarrays, Kerr
and Churchill write, “How does one make statistical inferences
based on the results of clustering?” [45]. Indeed, how is one
going to judge the worth of clustering algorithms unless it is
based on their inference capabilities? This difficulty is illustrat-
ed in Figure 18, where two seemingly good visualizations pro-
duce two very different partitions.

Many validation techniques have been proposed for evaluat-
ing clustering results; however, these are generally based on the
degree to which clusters derived from sample data satisfy certain
heuristic criteria. This is significantly different than classifica-
tion, where the error of a classifier is given by the probability of
an erroneous decision. We are confronted here by a basic issue
of scientific epistemology, and the matter can only be resolved
by a sound mathematical framework. Subjective appreciations
are useful in the formulation of hypotheses, but these are con-
stitutive of scientific knowledge only if they are set in a predic-
tive framework.

Regarding learning, clustering has sometimes been referred
to as “unsupervised learning.” Even if we do not argue that
such a term is an oxymoron, there is certainly no learning
going on when clustering is used in the typical manner. With
clustering, an operator is applied to a point set, and it yields a
partition of the point set. If there is no randomization within
the algorithm, then the operator is simply a function on point
sets; if there is randomization within the algorithm, then the
operator is a random function on point sets. In either event,
there is no learning.

If we wish to estimate the error of a cluster operator, then
we must assume that clusters resulting from the operator can
be compared to the correct clusters for the data set in the
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[FIG17] Hierarchical clustering of expression profiles of patients suffering from two types of lymphoma: DLBCL and MCL.
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context of a probability
distribution, thereby
providing an error
measure. If we assume
that data points are

generated from differ- ’
ent probability distri- ¢
butions, and these are \

known, then we can

generate independent X,
synthetic data to test
the performance of a
cluster operator. A sam-
ple of point sets is generated, the algorithm is applied to each
point set and the clusters are evaluated relative to the known
partition according to the distributions, and the errors are
averaged over the point sets composing the sample [46].

The key to a general probabilistic theory of clustering,
including error estimation and learning, is to recognize that
classification theory is based on operators on random variables
and that the theory of clustering needs to be based on operators
on random point sets. The predictive capability of a clustering
algorithm must be measured by the decisions it yields regarding
the partitioning of random point sets. Once this is recognized,
the path to the development of error estimators for clustering
accuracy and rules for learning clustering operators from data is
open, including finding Bayes cluster operators (optimal clus-
tering algorithms) [47]. Although the formulation of a predic-
tive theory is dictated by the fact that clustering algorithms are
set operators, having formulated a probabilistic theory, an enor-
mous amount of research remains to be done: developing the
mathematical theory, inventing clustering rule models to learn
cluster operators, and devising experimental methods, the latter
being especially difficult given the historical nonscientific use of
clustering and the challenging environment of random sets. Of
particular importance is the development of validity-type meas-
ures that can be applied to one point set and that possess some
quantitative relation to the clustering error rate.

GENETIC REGULATORY NETWORKS

The design of analytical and computational tools for the
modeling and analysis of gene regulation can help to under-
stand gene function and unravel the mechanisms underlying
regulation [48], [49]. This understanding will have a signifi-
cant impact on the development of techniques for drug test-
ing and therapeutic intervention for treating human
diseases [50]. Two related aspects of a genetic regulatory sys-
tem determine its dynamical behavior and, therefore, must
be modeled and analyzed: the connectivity structure and the
set of interactions between the elements [51], [52]. There
have been numerous attempts to model the dynamical
behavior of genetic regulatory networks, ranging from deter-
ministic to fully stochastic, using either discrete-time or
continuous-time descriptions of gene interactions (see [53]
for a literature review).

[FIG18] Two clusterings of the same data.
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Given that genes communicate via the proteins they encode
and that protein production (transcription and translation) is
controlled by a multitude of biochemical reactions, which are
in turn influenced by factors both internal and external to the
cell, one can assume that the gene expression of a particular
gene 7 appears as a random function X;(#) of the cell’s internal
and external environments. Thus, to investigate the dynamics
of a genetic regulatory network, one must construct a good
mathematical model for the dynamical behavior of the gene-
expression vector X(f) = (X1(¢), Xo(f), ..., Xn(1)) for the N
genes interacting in the network. The goodness of a model
can be considered with respect to several criteria: the level of
detailed description of the biochemical reactions involved in
gene regulation, model complexity, model parameter estima-
tion, and, most importantly, the predictive power of the
model. The stochastic-differential-equation model is arguably
the most detailed description of the dynamics of X(#), since it
could embed, at least in principle, all of the information about
the biochemical reactions involved in the gene interactions.
At the same time, this kind of model has high complexity, and
the estimation of its parameters cannot be done without reli-
able time series data, and a good amount of it. Ultimately, the
balance between available data, estimation techniques, and
model complexity determines the usefulness of a given model.

While it might be tempting to design a model that captures,
at least in theory, the gene interactions on a very fine scale, one
should be aware of the increased demand for larger data sets and
the requirement that model parameters must be determined so
that the model generates solutions consistent with observable
data. In this article, we focus on coarse models of genetic inter-
action designed using the limited amount of microarray gene
expression data typically available. Paradigms that have been
considered in this context include directed graphs, Bayesian net-
works, Boolean networks, generalized logical networks, and,
most recently, probabilistic Boolean networks. Here we will
highlight the main research issues using Boolean and proba-
bilistic Boolean networks. Similar issues arise in the case of
other networks.

PROBABILISTIC BOOLEAN NETWORKS
A Boolean network is defined by a set of nodes, V= {x1,
X2, ..., Xn}, and a list of Boolean functions, F = {A, A, ..., f,}
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[54], [55]. Each x; represents the state (expression) of a gene
gr where x; = 1 or x5 = 0, depending on whether the gene is
expressed or not expressed. The Boolean functions represent the
rules of regulatory interaction between genes. Network dynam-
ics result from a synchronous clock with times £=0,1,2, ...,
and the value of gene gy at time £+ 1 is determined by
Xp(t+ 1) = 13(Xp1, Xk2, - - -, Xk.m(ky) » Where the nodes in the
argument of 7 form the regulatory set for x; (gene gi). The
numbers of genes in the regulatory sets define the connectivity
of the network, with maximum connectivity often limited. At
time point £, the state vector x(f) = (x1(6), x2(f), ..., x,(0) is
called the gene activity profile (GAP). The functions together
with the regulatory sets determine the network wiring. A
Boolean network is a very coarse model; nonetheless, it facili-
tates understanding of the generic properties of global network
dynamics [56], [57], and its simplicity mitigates data require-
ments for inference. A Boolean network is based on the premise
that genes interact with each other through Boolean logic.
Recent work using the NCI 60 Anti-Cancer Drug Screen has
demonstrated that such interactions can be detected in gene
expression data [58].

Microarray technology yields simultaneous measurements of
expression status for thousands of genes and can be utilized for
network inference [59]. By viewing gene status across different
conditions, it is possible to establish relationships between
genes that show variable status across the conditions. Owing to
limited replications, we assume that gene expression data are
quantized based on some statistical analysis of the raw data. One
way to establish multivariate relationships among genes is to
quantify how the estimate for the expression status of a particu-
lar target gene can be improved through knowledge of the sta-
tus of some other predictor genes. This is formalized via the
coefficient of determination (CoD) [60], which is essentially a
nonlinear, multivariate generalization of the familiar goodness
of fit measure in linear regression. For our purposes, it is suffi-
cient to note that the CoD measures the degree to which the
best estimate for the transcriptional activity of a target gene can
be improved using the knowledge of the transcriptional activity
of some predictor genes, relative to the best estimate in the
absence of any knowledge of the transcriptional activity of the
predictors. The CoD is a number between zero and one, a higher
value indicating a tighter relationship. Given a target gene, sev-
eral predictor sets may provide equally good estimates of its
transcriptional activity, as measured by the CoD. Moreover, one
may rank several predictor sets via their CoDs. Such a ranking
provides a quantitative measure to determine the relative ability
of each predictor set to improve the estimate of the transcrip-
tional activity of the particular target gene. While attempting to
infer intergene relationships, it makes sense to not put all our
faith in one predictor set. Instead, for a particular target gene, a
better approach is to consider a number of predictor sets with
high CoDs. The consideration of each retained predictor set as
indicative of the transcriptional activity of the target gene with a
probability proportional to its CoD constitutes feature selection
for gene prediction.

Having inferred intergene relationships, this information can
be used to model the evolution of the gene activity profile over
time. It is unlikely that the determinism of the Boolean-network
model will be concordant with the data. One could pick the pre-
dictor set with the highest CoD, but as noted previously, there
are usually a number of almost equally performing predictor
sets, and the CoDs we have for them are only estimates from the
data. By associating several predictor sets with each target gene,
it is not possible to obtain with certainty the transcriptional sta-
tus of the target gene at the next time point; however, one can
compute the probability that the target gene will be transcrip-
tionally active at time £+ 1 based on the gene activity profile at
time £. The time evolution of the gene activity profile then
defines a stochastic dynamical system. Since the gene activity
profile at a particular time point depends only on the profile at
the immediately preceding time point, the dynamical system is
Markovian. Such systems can be studied in the established
framework of Markov chains and Markov decision processes.
These ideas are mathematically formalized in probabilistic
Boolean networks (PBNs) [61], [62]. In a PBN, the transcrip-
tional activity of each gene at a given time point is a Boolean
function of the transcriptional activity of the elements of its pre-
dictor sets at the previous time point. The choice of Boolean
function and associated predictor set can vary randomly from
one time point to another in accordance with the CoD-based
selection probabilities associated with the different predictor
sets. This defines an instantaneously random PBN.

Instead of simply assigning Boolean functions at each time
point according to CoD ranking, one can take the perspective
that the data come from distinct sources, each representing a
context of the cell. From this viewpoint, the data derive from a
family of deterministic networks and, were we able to separate
the samples according to the contexts from which they have
been derived, there would in fact be CoDs with value one, indi-
cating deterministic biochemical activity for the wiring of a par-
ticular constituent network. Under this perspective, the only
reason that it is not possible to find predictor sets with CoD
equal (or very close to) one is because they represent averages
across the various cellular contexts with their correspondingly
various wirings. This perspective results in the view that a PBN
is a collection of Boolean networks in which one constituent
network governs gene activity for a random period of time
before another randomly chosen constituent network takes over,
possibly in response to some random event such as an external
stimulus. Since the latter is not part of the model, network
switching is random. This model defines a confext-sensitive
PBN. The probabilistic nature of the constituent choice reflects
the fact that the system is open, not closed. The context-
sensitive model reduces to the instantaneously random model
by having network switching at every time point.

Given a Boolean network, one can partition the state-space
into a number of attractors along with their basins of attraction.
The attractors characterize the long-run behavior of the network
and have been conjectured by Kauffman to be indicative of the
cell type and phenotypic behavior of the cell [56]. For instance, it
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is thought that apoptosis and cell differentiation correspond to
some singleton attractors and their basins, while cell prolifera-
tion corresponds to a cyclic attractor along with its associated
basin [57]. Changes in the Boolean functions, via mutations or
rearrangements, can lead to a rewiring in which attractors
appear that are associated with tumorigenesis. This is likely to
lead to a cancerous phenotype unless the corresponding basins
are shrunk via new rewiring, so that the cellular state is not driv-
en to a tumorigenic phenotype, or, if already in a tumorigenic
attractor, the cell is forced to a different state by flipping one or
more genes. The objective of cancer therapy would be to use
drugs to do one or both of the above. These ideas for Boolean
networks can be generalized to PBNs by noting that the dynamic
behavior of PBNs can be described by Markov chains, so that a
PBN has equivalence classes of communicating states analogous
to the basins of attraction for Boolean networks. Similarly, since
all the states in an equivalence class communicate, there is a
steady-state distribution local to each equivalence class so that
the long-run behavior within that class can be studied.
Furthermore, by assuming that each gene has a small probability
of undergoing a random flip that leaves the network wiring
unchanged, as in the case of activation or inactivation owing to
external stimuli such as mutagens, heat stress, etc. [56], the
overall Markov chain is ergodic, which then guarantees the exis-
tence of a global steady-state distribution [63].

While we are limiting ourselves to binary networks, much of
the theory and application goes over directly to their extension to
probabilistic gene regulatory networks (PGRNs), the only differ-
ence being that quantization for PGRNs need not be binary, but
can be any finite quantization. A particularly important case is ter-
nary quantization, where expression levels take on the values +1
(up regulated), —1 (down regulated), and 0 (invariant). PGRNs are
commonly called probabilistic Boolean networks to emphasize
their logical nature, such as in the case of ternary logic.

Owing to complexity issues that arise for both computational
and statistical reasons, network compression is an important
problem in network modeling, the point being to reduce the size
of a given network while preserving some desirable properties of
the original network. For PBNs, one approach involves a projec-
tion mapping, defined to reduce the complexity of a PBN while
maintaining consistency with the original probability structure
of the PBN [64]. This mapping transforms a given PBN into a
new one with one less gene while preserving the probability
structure of the original PBN. In the process, the deleted gene
becomes a latent variable in the new network, with the result
being that every predictor in the original network that had the
deleted gene as an essential variable is replaced by two predictors
in the new network. These two predictors capture the differences
in the state transitions corresponding to the two different possi-
ble values for the latent gene. The projection mapping can be
repeatedly applied to achieve the desired reduction in the num-
ber of genes. An obvious drawback of the projection mapping is
that the number of genes in the PBN is reduced at the expense of
an exponential increase in the number of predictors and, hence,
the number of constituent Boolean networks for the new PBN.

To remedy the situation, a reduction mapping technique has
been introduced that does not necessarily preserve the probabili-
ty structure of the original PBN, but achieves reduction in PBN
complexity while ensuring that the reduced PBN is “close” to the
original one as measured by an appropriately defined metric [65].
The two compression approaches just discussed focus on reduc-
ing the complexity of a PBN that has already been inferred from
the data. A different approach, motivated by the MDL principle
and mentioned when we discussed complexity regularization,
aims to penalize network complexity when inferring the network
itself [28]. Since the network complexity is explicitly penalized in
the cost function during the inference process itself, the
designed network cannot be too complex. The complexity-reduc-
tion techniques proposed thus far only scratch the surface. There
need to be developed better methods that depend on minimizing
some difference metric between the original and reduced net-
works and which preserve (to the extent possible) the dynamical
structure of the original network.

NETWORK INFERENCE

For genetic regulatory networks to be of practical benefit, there
must be methods to design them based on experimental data.
We confront three impediments:

m model complexity

m limited data

m lack of appropriate time-course data to model dynamics.

A key research issue in GSP has been the inference of genetic
regulatory networks, and several approaches to the nefwork
inference problem have been proposed in the literature, most of
which are based on gene-expression microarray data. Here, we
briefly outline some of the proposed methods for PBNs and the
rationale behind each of them (there also having been substan-
tial study of inferring Boolean networks [66], [67]).

As first proposed, the inference of the PBN is carried out using
the CoD [61]. For each gene in the network, a number of high-CoD
predictor sets are found and these high-CoD predictor sets deter-
mine the evolution of the activity status of that particular gene.
Furthermore, the selection probability of each predictor set for a
target gene is assumed to be the ratio of the CoD of that predictor
set to the sum of the CoDs of all predictor sets used for that target
gene. This approach makes intuitive sense since it is reasonable to
assign the selection probability of each predictor set in a PBN to be
proportional to its predictive worth as quantified by the CoD.

A second approach to PBN construction uses mutual infor-
mation clustering and reversible-jump Markov chain Monte
Carlo (MCMC) predictor design [68]. First, mutual information
minimization clustering is used to determine the number of
possible parent gene sets and the input sets of gene variables
corresponding to each gene. Thereafter, each (predictor) func-
tion from the possible parent gene sets to each target gene is
modeled by a perceptron consisting of a linear term and a non-
linear term, and a reversible-jump MCMC technique is used to
calculate the model order and the parameters. Finally, the selec-
tion probability for each predictor set is calculated using the
ratio of the CoDs.
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In a third approach to inferring PBNs, subnetworks are con-
structed in the context of a directed graph by starting with a seed
consisting of one or more genes believed to participate in a viable
subnetwork [69]. The choice of seed represents prior partial
knowledge about the genetic regulatory network of interest.
Given the seed, new genes are iteratively joined in a manner that
enhances subnetwork autonomy. The proposed algorithm has
been applied using both the CoD and the Boolean-function influ-
ence [61], which measures interaction between genes. The algo-
rithm has the benefit of producing a collection of small, tightly
knit autonomous subnetworks as opposed to one massive net-
work with a large number of genes. Such small subnetworks are
more amenable to modeling and simulation studies. When prop-
erly seeded, they are more likely to capture a small set of genes
that may be maintaining a specific core regulatory mechanism.

[FIG19] A melanoma subnetwork grown from four seed genes: WNT5A, RTN1, S100B and SNCA.

Figure 19 shows a melanoma subnetwork grown from four
seed genes: WNT5A, RTN1, S100B and SNCA. The CoD has been
used as the measure of gene interaction and the gray boxes
denote the seed genes, while the white ellipses are the genes
added by the algorithm. The solid lines represent strong connec-
tions (connection strengths exceeding 0.3) while the dotted lines
represent weak connections (connection strengths between 0.2
and 0.3). This network reveals some very interesting insights that
are highly consistent with prior biological knowledge derived
from earlier gene expression studies using melanoma cell lines
[70], [71]. For instance, it is known that the WNT5A gene product
has the capability to drive aspects of cell motility and invasiveness.
That being the case, it is to be expected that genes playing a part
in either mediating extracellular matrix remodeling/interaction,
such as MMP3 (matrix metalloproteinase 3), SERPINB2 (serine

(or cysteine) proteinase
inhibitor), and MCAM
(melanoma adhesion mol-
ecule), or mediating cellu-
lar movement, such as
MYLK (myosin light
polypeptide kinase), would
share regulatory informa-
tion with WNT5A. On the
other hand, it is not
known how WNT5A regu-
lation is coupled to other
genes playing a part in
melanoma cell prolifera-
tion, such as MAP2K1
0.31 (mitogen-activated protein
kinase kinase 1) and the
regulation of apoptosis
such as CASP3 (cystein
aspartate protease 3) and
BIRC1 (baculoviral IAP
repeat-containing 1).
Nevertheless, it is quite
possible that high-level
coordination of these
activities exists through
either specific circuitry or
as a consequence of differ-
ing extracellular interac-
tions that arise from
metastatic cell movement.

A key issue in network
design arises because
much of the currently
available gene-expression
data comes to us from the
steady-state phenotypic
behavior and does not
capture any temporal his-
tory. Consequently, the
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process of inferring a PBN, which is a dynamical system, from
steady-state data is a severely ill-posed inverse problem. Steady-
state behavior constrains the dynamical behavior of the network
but does not determine it and, therefore, building a dynamical
model from steady-state data is a kind of overfitting. It is for this
reason that a designed network should be viewed as providing a
regulatory structure that is consistent with the observed steady-
state behavior. Also, it is possible that several networks may
emerge as candidates for explaining the steady-state data. Under
the assumption that we are sampling from the steady state, a
key criterion for checking the validity of a designed network is
that much of its steady-state mass lies in the states observed in
the sample data because it is expected that the data states con-
sist mostly of attractor states [72].

A number of recent papers have focussed on network infer-
ence, keeping in mind that most of the data states correspond to
steady-state behavior. In one of these, a fully Bayesian approach
has been proposed to construct probabilistic gene regulatory
networks that emphasize network topology [73]. The method
computes the possible parent sets of each gene, the correspon-
ding predictors, and the associated probabilities based on a non-
linear perceptron model, using a reversible jump MCMC
technique. An MCMC method is employed to search the network
configurations to find those with the highest Bayesian scores to
construct the PGRNs. This method has been applied to a
melanoma cell line data set. The steady-state distribution of the
resulting model contains attractors that are either identical or
very similar to the states observed in the data, and many of the
attractors are singletons, which mimics the biological propensi-
ty to stably occupy a given state. Furthermore, the connectivity
rules for the most optimal generated networks constituting the
PGRN were found to be remarkably similar, as would be expect-
ed for a network operating on a distributed basis, with strong
interactions between the components.

Two other approaches to PBN inference are currently under
development. In the first, algorithms are developed to attain
Boolean networks satisfying biologically related constraints
such as limited attractor structure, transient time, and connec-
tivity [74]. In the second, network design is carried out by
attributing the apparent inconsistencies in the data to different
underlying contexts for the network; this is done in such a way
as to minimize the number of contexts needed to resolve appar-
ent data inconsistencies while at the same time making the
probabilistic structure of the designed network compatible with
the empirical distribution of the designed network [75].

If we consider network inference from the general perspec-
tive of an ill-posed inverse problem, then one can formalize
inference by postulating criteria that constitute a solution space
in which a designed network must lie. For this, we propose two
types of criteria.

m Constraint criteria are composed of restrictions on the

form of the network, such as biological and complexity

constraints.

m Operational criteria are composed of relations that must

be satisfied between the model and the data.

Examples of constraint criteria include limits on connectivity and
attractor cycles. One example of an operational criterion is some
degree of concordance between sample and model CoDs, and
another is the requirement that data states are attractor states in
the model. The inverse problem may still be ill-posed with such
criteria, but all solutions in the resulting space can be considered
satisfactory relative to the requirements imposed by the criteria.

Before leaving inference, we note that in addition to the
ongoing effort to infer PBNs, there has been a long effort to infer
Bayesian and dynamic Bayesian networks (DBNs) [76]-[78]. Not
only do DBNs and PBNs represent stochastic models for regula-
tion, they are closely related according to the following theorem:
PBNs and discrete-valued DBNs whose initial and transition net-
works are assumed to have only within and between consecutive
slice connections, respectively, can represent the same joint dis-
tribution over their corresponding variables [79]. This theorem
holds open the possibility of applying design and intervention
methods for one model to the other, where it is necessary to rec-
ognize that the mapping between PBNs and DBNs is many-to-
one, so that a DBN does not specify a specific PBN.

INTERVENTION

The ultimate objective of genetic regulatory network modeling
is to use the network to design different approaches for affecting
the evolution of the gene activity profile of the network. To date,
such intervention studies have been carried out on PBNs using
three different approaches: 1) resetting the state of the PBN, as
necessary, to a more desirable initial state and letting the net-
work evolve from there [63], 2) changing the steady-state (long
run) probability distribution of the network by minimally alter-
ing its rule-based structure [80], and 3) manipulating external
(control) variables that affect the transition probabilities of the
network and can, therefore, be used to desirably affect its
dynamic evolution over a finite time horizon [81].

We briefly describe the results found in [81], where an inter-
vention study was carried out using a PBN derived from gene
expression data collected in a study of metastatic melanoma
[70]. In this expression-profiling study, the abundance of mRNA
for the gene WNT5A was found to be highly discriminating
between cells with properties typically associated with high
metastatic competence versus those with low metastatic compe-
tence. These findings were validated and expanded in a second
study [71], in which experimentally increasing the levels of the
Wntba protein secreted by a melanoma cell line via genetic engi-
neering methods directly altered the metastatic competence of
that cell as measured by the standard in vitro assays for metasta-
sis. Furthermore, it was found that an intervention that blocked
the Wntba protein from activating its receptor by the use of an
antibody that binds the Wnt5a protein could substantially
reduce Wntb5a’s ability to induce a metastatic phenotype. This
suggests the creation of a control strategy that uses an interven-
tion that reduces the WNT5A gene’s action in affecting biologi-
cal regulation, since the available data suggests that disruption
of this influence could reduce the chance of a melanoma metas-
tasizing—a desirable outcome.
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To this end, a seven-gene network, including the activity of
the WNT5A gene, was derived from the available gene expres-
sion data. This network, along with the multivariate relation-
ships between the genes, is shown in Figure 20. For each gene
in this network, the two best two-gene predictors were used
and their associated CoDs were computed. This information
was used to obtain the transition probabilities for the Markov
chain associated with the PBN. The intervention problem was
then posed as a finite-horizon optimal control problem. The
performance index, or cost function, was chosen to reflect the
tradeoffs between the intervention effort and the terminal
penalty associated with ending up in an undesirable (bad) state
at the end of the control horizon. Since the control objective is
to reduce the activity of the WNT5A gene, the entire state space
was partitioned into good and bad regions, the latter being
characterized by WNT5A overexpression. Bad states were
assigned higher terminal penalties than good states, and the
optimization problem was solved by dynamic programming.
Two possible interventions were considered: intervening with
Wntba directly (through its antibody) and intervening through
another gene called pirin. In each case, it was found that the
network with control performed better (in a probabilistic sense)
than the network without control, so that the control objective
was met. Furthermore, controlling WNT5A directly yielded bet-
ter performance than trying to control it through pirin, which
agrees with intuitive expectations.

The intervention approaches 1) and 3) above do not attempt to
alter the steady-state behavior of the network while approach 2)
attempts to increase the steady-state probability mass in the desir-
able states. However, all of these approaches are essentially first-
cut solutions and will have to be improved upon. For instance,
approach 2) uses a brute-force search algorithm, and a more sys-
tematic approach will have to be found by which one can increase
the steady-state probability mass in the desirable set of states while
correspondingly decreasing the mass in the undesirable ones.

Motivated by biological considerations, the initial result on
intervention presented here has been subsequently extended in

WNT5A

STC2 Pirin

HADHB S100P

MART1 RET1

[FIG20] WNT5A network.

several directions. In one approach, the optimal intervention
algorithm has been modified to accommodate the case where
the entire state vector (gene activity profile) is not available for
measurement [82]. In a second, the intervention results have
been extended to context-sensitive PBNs, which we believe are
a closer approximation at modeling biological reality [83].
Several open issues, however, remain. These issues, some of
which we now discuss, will have to be successfully tackled
before the intervention methods discussed here find application
in actual clinical practice.

Methodical assignment of terminal penalties: The formula-
tion of the optimal control problem assumes that there is a ter-
minal penalty associated with each state of the PBN. However,
the assignment of these terminal penalties for cancer therapy is
by no means a straightforward task. The reason is that, while the
intervention will be carried out only over a finite horizon, one
would like to continue to enjoy the benefits in the steady state.
For such purposes, the kind of terminal penalty used for the
melanoma cell line study of [81] is inadequate since it fails to
capture the steady-state behavior once the intervention has
ceased. To remedy the situation, one possibility is to assign ter-
minal penalties based on equivalence classes. The results of pre-
liminary simulation studies in this regard appear to be
encouraging [84].

Choice of control inputs: In the case of the melanoma cell line
study presented in [81], one of the genes in the PBN,
namely pirin, was used as a control input. A question arises as to
which gene (or genes) should be used as the control input. Of
course, one consideration is to use genes for which inhibitors or
enhancers are readily available. However, even if such a gene is
chosen, how can we be certain that it is capable of controlling
some other gene(s)? Although the answer is not clear at this stage,
we do believe that the traditional control theoretic concepts such
as controllability and observability [85] may yield some useful
insights. Another possibility is to use the concept of gene influence
[61], an approach that has been preliminarily explored in [83].

Intervening to alter the steady-state behavior: Given a
Boolean network, one can partition the state-space into a num-
ber of attractors along with their basins of attraction. The attrac-
tors characterize the long-run behavior of the Boolean network
and have been conjectured by Kauffman to be indicative of the
cell type and phenotypic behavior of the cell. Consequently, a rea-
sonable objective of therapeutic intervention could be to alter the
attractor landscape in the associated Boolean network. Such an
idea can be generalized to PBNs and a brute-force approach
aimed at such intervention has been proposed [80]. A more sys-
tematic approach for affecting the steady-state behavior needs to
be developed. Perhaps this could be achieved by exploiting and
further developing existing results in the control literature.

The optimal intervention strategies obtained thus far assume
known transition probabilities and pertain to a finite horizon
problem of known length. Their extension to the situation
where the transition probabilities and the horizon length are
unknown is also a topic for further investigation. Finally, the
intervention results obtained to date correspond to the
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following stages in standard control design: modeling, con-
troller design, and verification of the performance of the
designed controller via computer simulations. The designed
controllers will have to be successfully implemented in practical
studies, at least with cancer cell lines, before the benefits of
using engineering approaches in translational medicine become
transparent to the biological and medical communities. A con-
siderable amount of effort needs to be focused on this endeavor.
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