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nally effective model to parameterize DNA sequences in a way describing
comprehensively its auto and cross-correlation structure. The approach is based on four-channel Multivariate
Autoregressive Model (MVAR). The model was applied to a study of genes from the globin family for 6
vertebrate species. First, the sequences were coded as four signals (corresponding to the nucleotides), which
were fitted to a four-channel MVAR. From the correlation matrices the vectors of model coefficients were
calculated as functions of the nucleotide distance. The between-chromosomes and inter-species differences
were best distinguished in the cross-coefficients binding different nucleotide sequences. For clustering
purposes different metrics were tested and then two clustering procedures (Nearest Neighbor and UPGMA)
were applied. The clustering trees and consensus trees were constructed for exons, introns and whole genes.
The results were in agreement with the known dependencies between the chromosomes of the globin
family. The orthological genes for different species were grouped together. Inside these groups the
phylogenetically close organisms were localized in proximity.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The vast amount of genetic characterizations of various organisms,
including the fundamental, huge database collected in the framework
of the Human Genome Project, require application of new mathema-
tical methods and tools in order to extract biologically significant
features. This concerns in particular retrieval of phylogenetic
information contained in the sequenced genomes.

A broad repertoire of statistical methods have been applied to DNA
series including estimation of power spectra e.g. (Fukushima et al.,
2002), Mutual Information function e.g. (Holste and Grosse 2003),
wavelet transform e.g. (Arneodo et al., 1995; Audit et al., 2001), and
fractal analysis e.g. (Voss 1992; Stanley et al., 1999). Short-range and
long-range correlationswere found in DNA sequences (Trifonov 1998).
The short range 3 base pairs (bp) periodicities were connected with
properties of coding sequences (Fukushima et al., 2002) and theywere
found to be species independent (Grosse et al., 2000).

More recently, one-channel Autoregressive Model (AR) (Chakra-
varthy et al., 2004) and Discrete Autoregressive Model (DAR)
(Dehnert et al., 2003) was introduced to DNA analysis. Consecu-
tively, DAR was also used to estimate the correlation patterns of
chromosomes (Dehnert et al., 2005a) and the construction of the
clustering tree for eukaryotic species. In phylogenetic information
retrieval, statistical methods such as the study of correlations
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rights reserved.
(Dehnert et al., 2005b) and dinucleotide relative abundances (Karlin
and Mrazek, 1997) were used.

The first important step in statistical analysis of DNA is the
codification of the sequences in a way amenable to digital signal
processing and without loss of information. Different methods of
transcodification have been used. Voss (1992) proposed converting
DNA sequence into four binary sequences corresponding to four
nucleotides. In the position where the given nucleotide occurred a
value of one was inserted, other positions were filled with zeroes.
Other methods which become popular are DNA walks, which are
the cumulative sum of binary signals obtained with rules such as
purine versus pyrimidine or strong versus weak bonds. Different
rules for codification may be found in Bernaola-Galvan et al. (2002).
Numerical mapping of nucleotides involved also representation of
nucleotides in the complex space (Anastassiou, 2002) and derived
from this approach, real number representation (Chakravarthy et al.,
2004). However, this kind of representation is to a large degree
arbitrary. The method of K-strings (Yu and Anh, 2004) involved
assigning to the nucleotides numbers from 0–3 range.

In this paper we propose a method of codification of DNA
sequences and their parameterization in a way that allows for
efficient construction of phenograms. The sequence of each kind of
four nucleotides is transformed into a continuous sampled signal
and then all four signals are fitted into a multichannel autoregres-
sive model (MVAR). We demonstrate that our model correctly
reproduces known properties of DNA series such as the presence of
1/3 frequency, and the difference in statistical properties of exons
and introns. Then we use measures derived from the model
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Fig.1. Coding of DNA sequence. Upper part of picture—coding of the exemplary sequence into four numerical series (marked at left). Below, for 4 nucleotides from the left to the right:
binary signal, signal filtered by low-pass Butterworth filter, signal after addition of 10% noise. On horizontal axis distance in base pairs (bp).
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coefficients for construction of clustering trees for the globin family
in a computationally efficient way.

2. Method

2.1. Data sets

DNA sequences were downloaded from public database EMBL1.
They included: Canis lupus (CYGB, HBB, HBE1, MB, NGB), Gallus gallus
(CYGB, HBA2, HBB, HBE1, HBG1, HBM, HBZ, MB, NGB), Homo sapiens
(CYGB, HBA1, HBA2, HBB, HBD, HBE1, HBG1, HBG2, HBQ1, HBZ, MB,
NGB),Musmusculus (CYGB, HBA1, HBB, HBZ, MB, NGB), Pan troglodytes
(HBB, HBG1, HBG2, HBZ, MB, NGB) and Rattus norvegicus (CYGB, HBA1,
HBA2, HBG1, MB, NGB). The details concerning used sequencesmay be
found in Table 1 in the Appendix I.

Analyseswereperformedon:whole genes, exonsobtainedby sealing
exon sequences of a given gene and introns obtained in the same way.

2.2. Codification of DNA sequences

The transformation of point processes into continuous signals
allows for application of a broad range of methods developed for
analysis of time series. To make DNA sequences suitable to this kind of
approach we have used the method proposed for transformation of
point processes into continuous signals (Kamiński et al., 2001; Kocsis
1 http://www.ebi.ac.uk/embl
and Kaminski, 2006). The method proved to be useful in estimation of
relations between spike trains.

The procedure is as follows: each of the four channels was assigned
to a specific nucleotide. The occurrence of a nucleotide at a given
position was marked as 1 and the lack of it as 0 in the corresponding
channel (similarly to the method of Voss, 1992). Then additional
zeroes were inserted between each position. The insertion of
additional zeroes provided (according to the Nyquist rule) a correct
sampling frequency of fs=2/bp. The binary data were converted to
continuous signals by application of low-pass order 1 Butterworth
filter (Parks and Burrus, 1987), with 0.95 cut-off frequency. Filtering a
signal is based on amultiplication of the spectral representation of the
signal by a function called the transfer matrix of the filter. This
operation changes the original spectrum of the signal leaving only the
desired range of frequencies. In the time domain this operation is
equivalent to convolution of the signal with a series of time domain
filter coefficients. After that step the signal becomes a slowly
changing, smooth waveform. Special care is needed to preserve
position of the maxima in that signal, which correspond to nonzero
values in the original point process. To make the filtered data better
match the stochastic character of the autoregressive model, a small
amount (10%) of white uncorrelated noisewas added. The noise values
were drawn from zero mean Gaussian distribution generated by the
Matlab® routine randn with amplitude rescaled by a factor 0.1.
Because the noise is not correlated in any way with the original signal
its presence will not disturb the signal correlation structure from
sample to sample, described by the model parameters A(i). The
procedure of DNA sequences transformation is illustrated in Fig. 1.

http://www.ebi.ac.uk/embl


Fig. 2. Power spectrum of nucleotides of exon and intron sequences for human zetaglobin obtained fromMVAR model—solid line; broken line—critical level for significance α=0.05;
dotted line—average value for random distribution. Four upper pictures represent exon, four lower pictures intron spectra.
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2.3. Multivariate autoregressive model

The method of codification proposed above allows for the use of
repertoire of signal processing methods to the analysis of DNA
sequences. Among them the multivariate autoregressive model
(MVAR) proved to be an excellent tool for determination of
interrelation between signals for multichannel processes e.g.: (Bli-
nowska and Kaminski, 2006), (Kaminski and Liang, 2005).

The four channels representing nucleotide sequences were fitted
simultaneously to the MVAR model. The MVAR model assumes that
X(t)—a sample of data at a position t—can be expressed as a sum of
its j previous values weighted by model coefficients A plus a
random component E(t):

X tð Þ =
Xp
j = 1

A jð ÞX t−jð Þ + E tð Þ: ð1Þ

The p is called the model order. For a k-channel process X(t) and E(t)
are vectors of size k and the coefficients A are k×k-sized matrices.

The calculation of the MVAR model coefficients is based on the
estimation of the matrix of correlations between channels. Methods
for findingmodel coefficients may be found in textbooks e.g.: (Marple,
1987; Lütkepohl, 1993); here we have used the Yule–Walker method.
The outline of the method is presented in Appendix II.

The statistical criteria for determination of the model order (e.g.
Akaike, 1974) did not show the distinct minimum, so the problem of
optimal model order selection was approached by searching for a
balance between the tendency to increase the accuracy of the fit by
increasing the model order and the deterioration of statistical
Fig. 3. MVAR coefficients Aij(m) as functions of nucleotide distance. For exon sequences of
magenta, chicken—green). On the diagonal Ai = j(m), off-diagonal Ai≠j(m).
properties of the estimate for higher model order. The number of
MVAR parameters, which is equal to k2p, has to be several times
higher than the number of data points, which is equal to kN (N is the
number of data points in one channel). Considering the length of the
shortest sequence in our data we have chosen model order 30. We
have checked that the performance of the model is not very sensitive
to the value of the model order. A change of model order in the range
30±10 weakly influenced the shape of the spectra and the values of
the coefficients.

2.4. Construction of phenograms

The construction of phenograms is based on the measures of the
similarities between the points in the parameters space. To quantify
the similarity a measure of the distance has to be introduced. After
testing several measures of distance we have chosen the average
correlation distance. The correlation distance dxy was calculated
according to the formula:

dxy = 1−
Cxy + 1

2
ð2Þ

where

Cxy =
P

i xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j x

2
j

P
k y

2
k

q ð3Þ

and x, y are vectors of MVAR coefficients. Average correlation distance
was obtained by summation of all sixteen dxy values and division by
their number.
betaglobin for different species: human—blue, chimpanzee—cyan, dog—red, mouse—



Fig. 4. MVAR coefficients for human exon sequences of 7 genes from globin family. The colors correspond to the following genes: CYGB—red, HBA1—green, HBB—blue, HBE1—cyan,
HBG1—magenta, MB—yellow, NGB—black.
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On the basis of the above defined measures the distance matrix
was defined, which served for the construction of phenograms. Using
the phylogenetic numerical methods two-dimensional unrooted
bifurcational diagrams were constructed in the Euclidean space. The
calculations were conducted bymeans of the PHYLIP package2 for two
algorithms: Neighbor-Joining Method (NJ) and Unweighted Pair
Group Method with Arithmetic Mean (UPGMA).
2.5. Estimation of significance

The tests of significance of power spectra and correlations of model
coefficients vectors obtained for different globins/species involved
comparisonwith the random nucleotide sequences. For each analyzed
data segment a random sequence of nucleotides was generated as
permutations without repetitions, and for this sequence model
coefficients were calculated. This procedure was repeated 1000
times and the distributions of function values were found. The
significance levels of rejecting the hypothesis of no difference in
respect to random sequences were calculated for correlations
between MVAR coefficients for different species/globins. In the case
of power spectra, from the estimated distributions percentiles were
calculated on a significance level of 0.05.

In order to find the consensus trees the bootstrap method was
applied. Bootstrap was realized by randomly drawing MVAR model
coefficients (with repetitions), then the values of distances were
calculated for the matrices of coefficients. Usually the jackknife
method (random elimination of some components) is applied for
2 http://evolution.genetics.washington.edu/phylip.html
obtaining consensus trees, however, the advantage of bootstrap is that
the dimension of the samples pool is the same as in the original data
(Efron, 1987).

3. Results

In the first step of our analysis we have considered the power
spectra, which can be easily calculated from MVAR coefficients (the
formula for calculation of spectra is given in Appendix II). It is known
that for coding sequences (contrary to non-coding sequences) at 1/3
(bp) a spectral maximum occurs, which was found by Fourier
analysis, e.g.: by Voss (1992), Buldyrev et al. (1995) and Fukushima et
al. (2002). This phenomenon is connected with codon structure,
which consists of three nucleotides (Buldyrev et al., 1995). The typical
examples of exon and intron spectra are shown in Fig. 2. For the
exons we have found in almost all cases statistically significant
maxima corresponding to frequency 1/3, which was not the case for
introns, where peaks of this frequency rarely appeared. This
observation validates the application of MVAR model to the DNA
sequences.

In the MVAR model the value of the signal at the given point is
described bymeans of the preceding samples of the same channel and
also bymeans of samples of all other channelsmultiplied by themodel
coefficients. By fitting a four channel MVAR model to the data, the
matrix of coefficients of dimensions: 4×4×p is obtained:

M mð Þ =
MAA mð Þ MAC mð Þ MAG mð Þ MAT mð Þ
MCA mð Þ MCC mð Þ MCG mð Þ MCT mð Þ
MGA mð Þ MGC mð Þ MGG mð Þ MGT mð Þ
MTA mð Þ MTC mð Þ MTG mð Þ MTT mð Þ

0
BB@

1
CCA;m = 1; N ;p: ð4Þ

http://evolution.genetics.washington.edu/phylip.html


Fig. 5. Clustering tree for exon sequences of globin family genes. Numbers represent the distances between groups connected by the given knot. Measure of the distance—average
correlation coefficient dxy, clustering algorithm UPGMA. The abbreviations of species names: hs—Homo sapiens, pt—Pan troglodytes, cl—Canis lupus, rn—Rattus norvegicus, mm—Mus
musculus, gg—Gallus gallus.
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taglobininfo.html
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The matrix element from column j and row i describes the influence
of channel j on the channel i as a function of index m, which
gives the backward distance along the sequence measured in samples
of 2/bp.

We have calculated the model coefficients for different globins and
species. In Fig. 3 the coefficients obtained for the betaglobin exon
sequence for different species are shown and in Fig. 4 the coefficients
obtained for different human globins are illustrated. We can observe
for the betaglobin gene that the MVAR coefficients are rather similar
for different species (Fig. 3). The biggest differences can be observed
for chicken. The differences in the coefficients values are bigger in the
case of different genes in one species (Fig. 4).

In Fig. 3 as well as in Fig. 4 the differences between the coefficients
are bigger for off-diagonal pictures. Itmeans thatmost important for the
distinction are the cross-dependences between fourchannels describing
nucleotide sequences. Considering the shape of the functions it is easy to
observe that the evolution of coefficients as a function of m bears the
similarity, not the particular value at a givenpoint. It suggests the choice
of correlation as a measure of similarity between vectors of MVAR
coefficients for different globins and species.

In order to compare the interspecies similarities of globins we have
calculated the correlations between MVAR coefficients Aij(m). Magni-
tudes of the correlations between human and four other species for
myoglobin sequences are shown Table 2 (Appendix I) together with
the significance levels. The highest values were obtained for
correlations between human and chimpanzee, as might have been
expected. For all the studied globins the highest correlations between
coefficients were observed for phylogenetically close species i.e.
human and chimpanzee, mouse and rat.

From the correlations the distances were calculated. The average
correlation distances between human and four species for myoglobin
sequence are shown in Table 3 (Appendix I). The obtained distance
between human and chimpanzee is the smallest one, the biggest are
the distances between chicken and mammals.

These results were encouraging to attempt the construction of the
clustering trees. Fig. 5 shows the phenogram for exon sequences
obtained bymeans of the average correlation distance and the UPGMA
algorithm. Inspecting Fig. 5 one can easily see the grouping of the
orthologous genes belonging to different organisms, which might
have been expected from the values of the correlations between
vectors of model coefficients. In Fig. 5 one can distinguish groups:
CYGB, MB, NGBwith HBQ1, HBB–HBD, HBE–HBG, HBA–HBM–HBZ and
the group of three genes of chicken: HBB, HBE1 and HBG1. Inside the
groups the closest positions were occupied by the genes of related
species namely: human and chimpanzee, mouse and rat.

In order to verify the obtained classification the consensus trees
were calculated by means of the bootstrap method. The consensus
tree obtained for exons bymeans of UPGMA algorithm is shown in Fig.
6. It differs from the tree obtained for original data, however the main
tendencies are conserved, namely main groups of globins are
clustered together. The exception was the cytoglobin family, which
was split.

We have constructed also clustering trees and consensus trees for
introns and for whole genes (Figs. 7, 8, 9,10). In Fig. 7 the phenogram for
intron sequences is shown. We can observe that even for these non-
coding sequences main groups of globins are clustered together,
however evolutionary close organisms rather than subgroups appear
together. This is the case for thehemoglobin family. In the case of introns
the consensus tree shown in Fig. 8 the clustering of similar globins is not
as good as in previous figures. The hemoglobin family is split by a
neuroglobin group. Cytoglobins do not form a distinct cluster.

The phenogram for whole genes (Fig. 9) bears resemblance to the
phenogram for exons in respect of grouping families of genes. We
can notice in the dendrograms of whole genes groups corresponding
to the α-, β-, γ-globins, NGB, MB, CYGB, however, the ordering is
not as good as it was in the case of exon sequences. The consensus
tree for the whole genes is shown in Fig. 10. The structure of the tree
is similar as in Fig. 9. There are tendencies of grouping together
different globins for the same organisms. This is especially the case
for chicken which was to a smaller degree also manifested in other
dendrograms.
4. Discussion

Most statistical methods applied so far address long range
properties of DNA sequences and they have a statistical limitation
on the required length of sequences, however correlations on smaller
scale (hundreds of base pairs) give information on the codon structure
directly related to regulatory functions. Therefore, here we have
concentrated on the short DNA sequences for demonstration of the
classification power of the multichannel autoregressive approach.
However, the method can be used as well for the sequences of
thousands or tenths of thousands bp.

The application of the four-channel MVAR model allowed for
establishing relations between thenucleotides occurrences as a function
of nucleotide distances in terms of model coefficients. The evolution of
coefficients Aij(m) linking different nucleotides (i≠ j) showed bigger
variability depending on the kind of gene and also on the kind of species
than autoregressive coefficients for a given nucleotide (i= j). This fact
shows an advantage of the multivariate approach in statistical
evaluation of DNA sequences, which gives an exhaustive and explicit
description of the correlation structure of DNA sequences. In the
proposed approach the relations between the occurrences of all four
nucleotides are estimated in the framework of one MVAR model. It has
been shown (Blinowskaet al., 2004) that relationsbetween the channels
of a process may be found correctly only if all interdependent series are
considered simultaneously in one multichannel model.

Comparison of our results with the phylogenetic tree of globins3

shows very good concordance. Namely, according to the above
reference, alpha and beta subunits of hemoglobin as well as myoglobin
form the main branches of a phylogenetic tree and then smaller
ramifications corresponding to the species are formed. This pattern is
congruent with our findings. Cytoglobins, myoglobins, neuroglobins,α-
globins and β-globins families are separated and form a main branches
of the phylogenetic tree (Fig. 5). The subgroups inside the α- and β-
globin families are ordered correctly as well, with only a few exceptions
concerning very closely related globins. In case of consensus tree (Fig. 6)
main branches enumerated above are still well distinguished, there are
more exceptions in the case of subgroups, but the main structure is
preserved. The ordering of main groups is also the case for introns, with
the exception of cytoglobins (Fig. 7). Inside the main groups species
rather thansubgroups are clustered. Thismaybe interesting information
in tracing the evolution of particular species/globins. The 72 β-globin
family genes from different species were used for phylogenetic
reconstruction by Aguileta et al. (2004). They found several displace-
ments supported by high bootstrap proportions. They conjecture that a
potential source of conflict between the gene tree and the species tree
could be gene conversion. This effect might be also the reason of some
displacements observed by us.

The globin chromosomes are not among those which changed
much during the evolution, so one may expect difficulties in
distinguishing genes belonging to close species, however our method
showed grouping of such species as a Homo sapiens and chimpanzee,
rat andmouse (Tables 2 and 3). The distinction between the subgroups
of genes such as HBG1–HBG2, HBA1–HBA2 was not pronounced, in
this case rather the same species, not the same genes were grouped

http://www.muhlenberg.edu/depts/biology/courses/bio152/BioinformaticsLab/betaglobininfo.html
http://www.muhlenberg.edu/depts/biology/courses/bio152/BioinformaticsLab/betaglobininfo.html


Fig. 6. Consensus tree for exon sequences of globin family genes for 100 bootstrap trials. Numbers represent the distances between groups connected by the given knot. Measure of
the distance—average correlation coefficient dxy, clustering algorithm UPGMA. The abbreviations of species names as in Fig. 5.
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Fig. 7. Clustering tree for intron sequences of globin family genes. Numbers represent the distances between groups connected by the given knot. Measure of the distance—average
correlation coefficient dxy, clustering algorithm UPGMA. The abbreviations of species names as in Fig. 5.
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Fig. 8. Consensus tree for intron sequences of globin family genes. Numbers represent the distances between groups connected by the given knot. Measure of the distance—average
correlation coefficient dxy, clustering algorithm UPGMA. The abbreviations of species names as in Fig. 5.
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Fig. 9. Clustering tree for whole genes from globin family. Numbers represent the distances between groups connected by the given knot. Measure of the distance—average
correlation coefficient dxy, clustering algorithm UPGMA. The abbreviations of species names as in Fig. 5.
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Fig. 10. Consensus tree for whole genes from globin family. Numbers represent the distances between groups connected by the given knot. Measure of the distance—average
correlation coefficient dxy, clustering algorithm UPGMA. The abbreviations of species names as in Fig. 5.
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Table 1
Sequence lengths of exons and introns used for construction of phenograms

Specie Gene Length of nucleotide sequences

Gene Exonic Intronic

Canis lupus CYGB 9235 961 8274
HBB 1529 679 850
HBE1 9885 576 9309
MB 10015 1137 8878
NGB 4170 384 3786

Gallus gallus CYGB 7644 540 7104
HBA2 789 536 253
HBB 1146 495 651
HBE1 1191 540 651
HBG1 1632 537 1095
HBM 835 426 409
HBZ 1434 429 1005
MB 3816 902 2914
NGB 2335 483 1852

Homo sapiens CYGB 10343 1951 8392
HBA1 842 576 266
HBA2 834 575 259
HBB 1606 626 980
HBD 1800 774 1026
HBE1 1794 816 978
HBG1 1586 584 1002
HBG2 1591 583 1008
HBQ1 844 651 193
HBZ 1651 589 1062
MB 16591 1170 15421
NGB 5822 1876 3946

Mus musculus CYGB 8719 2331 6388
HBA1 820 564 256
HBB 1380 610 770
HBZ 1512 596 916
MB 35182 1056 34126
NGB 5009 1616 3393

Pan troglodytes HBB 15098 765 14333
HBG1 35717 1156 6711
HBG2 1775 764 1011
HBZ 12797 703 12094
MB 32841 797 32044
NGB 4478 456 4022

Rattus norvegicus CYGB 9767 2112 7655
HBA1 856 556 300
HBA2 844 544 300
HBG1 1379 444 935
MB 7232 947 6285
NGB 5068 1554 3514
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together. The analysis concerning subgroups of genes for different
species may be helpful in finding phylogenies for evolutionary close
organisms.

In Rokas et al. (2003) the incongruence in phylogenies obtained
from single genes was pointed out. Our results for different genes give
to a large degree coherent phylogenetic dependencies, although they
concern highly related species, which in some statistical analyses are
difficult to sort out: e.g. human and chimpanzee. In the phylogenetic
analyses of whole genomes the interspecies differences, not the
differences between genes, are dominant, however the study of exon,
intron and gene sequences may bring a closer look at the particular
evolutionary divergence.

Our results have shown that also from intron sequences the
phylogenetic information may be retrieved, which may be helpful in
analysis of evolutionary diversity. There is emerging evidence that
interspecies differences may be found also in non-coding sequences
e.g.: Willows-Munro et al. (2005). According to Luo et al. (1998)
evolutionary dependences may be found in intron sequences,
however they are expressed in another “genetic language”. The use
of intron sequences for genomic and evolutionary analysis was
discussed in Irmia and Roy (2008). It was pointed out that the appeal
of intronic sequences for phylogenetics of recent divergences owes to
their plausibly being both more rapidly and more neutrally evolving
than protein coding. Relatively fast evolving intron sequences are
especially suitable for resolving relationships between highly related
animals, e.g. they have been applied successfully to explain evolu-
tionary relationships among Cetartiodactyla (Matthee et al., 2001),
Leporidae (Matthee et al., 2004) and also Bovidae (Matthee and Davis,
2001). The method proposed by us seems to be particularly useful to
the study of closely related species, since it can operate on selected not
very long intron sequences.

The proposed method is computationally very efficient. The
computations were conducted on personal computer with Intel
Core 2 Duo 2.0 GHz processor and 2048 MB RAM. The MVAR
coefficients were calculated in real time. The construction of
clustering trees encompassing 44 genes took 22 s. The generation
of consensus trees based on 100 bootstraps (UPGMA method)
took 250 s. Taking into account the amount of genetic information
contained in data bases, waiting to be sorted, the speed of
computations is not to be ignored.

Our approach has several advantages in comparisonwith the other
methods applied so forth:

• The traditional methods of dendrogram construction based on
multiple sequence alignment involve heavy computations and
usually require powerful computers. The databases of the Gene
Banks accumulate more and more material and there is an
increasing need for fast methods to sort the stored information.
The method proposed by us is very fast and can be run at the
average PC. In comparison with the other statistical methods like
DAR it is still much faster.

• Our method performs better than other statistical methods like
DAR. Namely DAR model (Dehnert et al., 2005b) contrary to our
model failed to distinguish human and chimpanzee genomes and
chicken was placed close to human and chimpanzee, whereas in
our model chicken was separated from mammals.

• Our approach can be applied to the long and to the short sequences as
well. Other statistical methods require long sequences e.g. the DAR
model required minimal length of a sequence of the order of 30 kbp
(Dehnert et al., 2005b). Quite often, especially for the study of
phylogenies of very close species the evolutionary information is
encoded in short sequences (sometimesnotonlyexonsbut also intron
sequences give crucial information as it was pointed out above), also
short sequences give information on the codon structure directly
related to regulatory functions. Our method allows for comparison of
many short sequences in a very efficient way.
• The power of the method comes from the fact that we include
information of statistical relations between different nucleotides
sequences; that part of multichannel data sets is not taken into
account by other methods.

The method described in this article introduces a new approach to
the study of phylogenic relations. It offers complete and explicit
information on the auto- and cross correlation dependencies between
nucleotide occurrences. Due to efficient parameterization of
sequences the clustering trees can be obtained with a high level of
confidence and in a computationally effective way. The method may
become a useful tool in the study of phylogenetic diversity.
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Table 2
Correlation coefficients between human and five other species for exonic sequences of
myoglobin gene (in parentheses significance levels)

A C G T

A Pan troglodytes 0.906 (0.062) 0.878
(b0.001)

0.853 (0.004) 0.942
(b0.001)

Canis lupus 0.868 (0.399) 0.862 (0.004) 0.593 (0.595) 0.766 (0.026)
Rattus
norvegicus

0.870 (0.337) 0.783 (0.029) 0.563 (0.563) 0.719 (0.067)

Mus musculus 0.903 (0.128) 0.798 (0.016) 0.544 (0.689) 0.798 (0.012)
Gallus gallus 0.877 (0.292) 0.887

(b0.001)
0.659 (0.323) 0.850 (0.006)

C Pan troglodytes 0.778 (0.019) 0.930 (0.017) 0.888
(b0.001)

0.706 (0.071)

Canis lupus 0.843 (0.007) 0.911 (0.138) 0.767 (0.172) 0.770 (0.045)
Rattus
norvegicus

0.756 (0.067) 0.919 (0.066) 0.811 (0.039) 0.726 (0.078)

Mus musculus 0.745 (0.065) 0.926 (0.041) 0.749 (0.150) 0.789 (0.029)
Gallus gallus 0.455 (0.770) 0.933 (0.018) 0.624 (0.442) 0.572 (0.433)

G Pan troglodytes 0.921 (0.001) 0.970 (b0.001) 0.934 (0.019) 0.903
(b0.001)

Canis lupus 0.845 (0.017) 0.919 (b0.001) 0.950 (0.011) 0.802 (0.019)
Rattus
norvegicus

0.916
(b0.001)

0.932
(b0.001)

0.897 (0.223) 0.683 (0.212)

Mus musculus 0.854 (0.008) 0.967 (b0.001) 0.932 (0.051) 0.682 (0.234)
Gallus gallus 0.769 (0.065) 0.920

(b0.001)
0.890 (0.220) 0.613 (0.382)

T Pan troglodytes 0.862 (0.001) 0.766 (0.024) 0.864 (0.002) 0.923 (0.017)
Canis lupus 0.619 (0.230) 0.670 (0.191) 0.660 (0.278) 0.935 (0.014)
Rattus
norvegicus

0.710 (0.074) 0.653 (0.210) 0.504 (0.674) 0.761 (0.876)

Mus musculus 0.719 (0.098) 0.758 (0.060) 0.546 (0.621) 0.833 (0.621)
Gallus gallus 0.415 (0.804) 0.663 (0.192) 0.529 (0.647) 0.921 (0.033)

Table 3
The average correlation distances for myoglobin exons for six species (below diagonal)
and statistical significances estimated by means of bootstrap (1000) repetitions (above
diagonal)

Homo
sapiens

Pan
troglodytes

Canis
lupus

Rattus
norvegicus

Mus
musculus

Gallus
gallus

Homo sapiens b0.001 b0.001 b0.001 b0.001 b0.001
Pan troglodytes 0.073 b0.001 b0.001 b0.001 b0.001
Canis lupus 0.124 0.123 b0.001 b0.001 b0.001
Rattus norvegicus 0.150 0.121 0.156 b0.001 0.002
Mus musculus 0.138 0.114 0.147 0.062 0.001
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The autoregressive (AR) model is based on an assumption that a
value of the series X at a point t can be expressed by its p previous
values with certain coefficients A(i) plus a noise component E (see
Eq. (1)). This type of a model is widely used e.g. in economics and
especially in biomedical signal analysis. The AR model describes
stochastic time series, randomly changing its values from point to
point; the random component E in Eq. (1) represents the stochastic
part of the modeled signal. When we observe a set of k signals
simultaneously, such process is called multivariate or multichannel,
X and E are vectors of size k and coefficients A are matrices of size
k×k.

There are many methods of finding AR model parameters for the
given data. We used the Yule–Walker method, which will be briefly
described below. First, we must calculate the cross-correlation matrix
R of the signals for time lags s ranging from 0 to p:

R sð Þ = 1
N

XN
i = 1

X ið ÞXT i + sð Þ; s = 0; N ;p: ð5Þ

Gallus gallus 0.171 0.167 0.165 0.204 0.175
Then we notice that if we multiply both sides of the model
equation (Eq. (1)) by XT(i−s) and take expectations of both sides the
result can be expressed using the correlation matrix R:

Xp
i = 1

A ið ÞR i−sð Þ + 0 = R −sð Þ ð6Þ

where 0 represents zero matrix—result of expectations taken on
product of signal and noise, which are uncorrelated. After transposi-
tion of both sides of Eq. (6) we get

Xp
i = 1

RT i−sð ÞAT ið Þ = RT −sð Þ: ð7Þ

Repeating this for s=1, ..., pwe get a set of linear equations to solve
where A are unknowns and R are calculated from the data:

RT 0ð Þ RT 1ð Þ : : : RT p−1ð Þ
RT −1ð Þ RT 0ð Þ RT p−2ð Þ

v O v
RT 1−pð Þ : : : : : : RT 0ð Þ

0
BB@

1
CCA

AT 1ð Þ
AT 2ð Þ

v
AT pð Þ

0
BB@

1
CCA =

RT −1ð Þ
RT −2ð Þ

v
RT −pð Þ

0
BB@

1
CCA: ð8Þ

Solving this set we obtain the set of model coefficients A(i)
describing properties of the original data.

Eq. (1) can be easily transformed to describe relations in the
frequency domain. After rewriting Eq. (1) in the following form (with
sign of A changed)

E tð Þ =
Xp
j = 0

A jð ÞX t−jð Þ ð9Þ

the application of Z transformation (which is analogous to Fourier
transformation in this case) yields

E fð Þ = A fð ÞX fð Þ ð10Þ

After multiplying both sides of Eq. (10) by A−1 we get

X fð Þ =A−1 fð ÞE fð Þ =H fð ÞE fð Þ

where : H fð Þ =
Xp
m = 0

A mð Þ exp −2πimfΔtð Þ
 !−1

ð11Þ

From the form of that equation we see that the model can be
considered as a linear filter with white noises E(f) on its input—right
handof the equation (flat dependence on frequency) and the signalsX(f)
on its output—left hand of the equation. The matrix of filter coefficients
H(f) is called the transfer matrix of the system. It contains information
about all relations between data channels in the given set.

From the matrix H(f) estimators such as spectra and coherences
can be calculated. It easily follows that the spectral matrix is given by:

S fð Þ = X fð ÞX4 fð Þ =H fð ÞE fð ÞE4 fð ÞH4 fð Þ =H fð ÞVH4 fð Þ ð12Þ

(asterisk denotes a transpose and complex conjugate operation).
The matrix S(f) contains auto-spectra of each channel on the diagonal
and cross-spectra off the diagonal.
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