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Signal Processing in Sequence Analysis:
Advances in Eukaryotic Gene Prediction

Mahmood Akhtar, Julien Epps, Member, IEEE, and Eliathamby Ambikairajah, Member, IEEE

Abstract—Genomic sequence processing has been an active
area of research for the past two decades and has increasingly
attracted the attention of digital signal processing researchers in
recent years. A challenging open problem in deoxyribonucleic
acid (DNA) sequence analysis is maximizing the prediction ac-
curacy of eukaryotic gene locations and thereby protein coding
regions. In this paper, DNA symbolic-to-numeric representations
are presented and compared with existing techniques in terms of
relative accuracy for the gene and exon prediction problem. Novel
signal processing-based gene and exon prediction methods are
then evaluated together with existing approaches at a nucleotide
level using the Burset/Guigo1996, HMR195, and GENSCAN
standard genomic datasets. A new technique for the recognition
of acceptor splice sites is then proposed, which combines signal
processing-based gene and exon prediction methods with an
existing data-driven statistical method. By comparison with the
acceptor splice site detection method used in the gene-finding pro-
gram GENSCAN, the proposed DSP-statistical hybrid technique
reveals a consistent reduction in false positives at different levels
of sensitivity, averaging a 43% reduction when evaluated on the
GENSCAN test set.

Index Terms—Autoregressive processes, correlation, deoxyri-
bonucleic acid (DNA), discrete cosine transforms (DCTs), discrete
Fourier transforms (DFTs), Gaussian mixture models.

I. INTRODUCTION

DEOXYRIBONUCLEIC acid (DNA), the material of
heredity in most living organisms, consists of genic

and intergenic regions, as shown in Fig. 1. In eukaryotes,
genes are further divided into relatively small protein coding
segments known as exons, interrupted by noncoding spacers
known as introns. In eukaryotes such as human, the intergenic
and intronic regions often make up more than 95% of their
genomes. Codons (i.e., triplets of possible four types of DNA
nucleotides , , , and ) in exons encode 20 amino acids
and 3 terminator signals, known as stop codons (i.e., TAA,
TAG, and TGA). Initial exons of the genes begin with a start
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codon “ATG.” Looking from the end of DNA (upstream) to
its end (downstream), the exon-to-intron border is known as
the donor splice site and consists of a consensus dinucleotide
“GT” as the first two nucleotides of the intron, whereas the
intron-to-exon border is known as the acceptor splice site,
which consists of a consensus dinucleotide “AG” as the last
two nucleotides of the intron. The accurate identification of
genomic protein coding regions, along with the recognition of
other signals and/or regions (shown in Fig. 1) would result in
an ideal gene finding and annotation system.

Despite the existence of various data-driven gene finding
programs, such as AUGUSTUS [1], FGENES [2], geneid [3],
GeneMark.hmm [4], Genie [5], GENSCAN [6], HMMgene
[7], Morgan [8], and MZEF [9], the accuracy of gene predic-
tion is still limited. Previous investigations of computational
gene finding programs [10]–[13] reveal that these data-driven
approaches seem to rely more on compositional statistics of the
sequences (e.g., content) than the genomic signals (e.g.,
promoters, acceptor/donor sites, start/stop codons) involved in
the translation process from DNA to protein, and are heavily
dependent on the statistics of the sequences they learn from
and are, thus, not equally suitable for all types of sequences.
Furthermore, the accuracy is dependent on the length and
position of the exons [14], [15]. High prediction accuracy can
often be attributed to friendly training and test sequences, in
whose formation certain rules were followed, such as including
sequences consisting of one complete gene with consensus
intronic dinucleotides “GT” and “AG,” respectively, for their
donor and acceptor splice sites, excluding those containing al-
ternatively spliced genes and having any in-frame stop codons.

However, it has been observed that gene prediction accuracy
can be substantially increased by combining different methods
[16], [17]. The discrete nature of the DNA information, being
discrete in both “time” and “amplitude,” invites investigation
by digital signal processing (DSP) techniques. The conversion
of DNA nucleotide symbols into discrete numerical values en-
ables novel and useful DSP-based applications for the solu-
tion of different sequence analysis related problems such as
gene finding and annotation, and such applications have been
overviewed by previous authors [18], [19]. The present role
of DSP applications in this area is summarized in Fig. 2. In
order to apply DSP methods, the DNA sequences are first con-
verted into suitable numeric values. DSP-based methods for pe-
riodicity detection are then applied to the numerical sequences
to obtain 1-D or multidimensional features. The resultant fea-
tures are then passed on for back-end processing to classify be-
tween protein coding and noncoding regions. An empirically
derived decision threshold can be used for 1-D classification,
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Fig. 1. Eukaryotic DNA consists of genic and intergenic regions. Donor and acceptor sites (i.e., 5 and 3 ends of all introns) are used to splice exons on both
sides of an intron in a process known as splicing.

Fig. 2. DSP techniques are applied to DNA sequences following conversion into numerical signals, to extract features. The classification results can be used to
provide accurate detection of exonic end-points (acceptor/donor splice sites).

whereas multidimensional classification can be achieved using
well-known pattern recognition tools such as Gaussian mixture
models (GMMs) or support vector machines (SVMs).

To our knowledge, despite the signal processing research ac-
tivity in this area, no comparisons with well-established existing
data-driven methods for eukaryotic gene prediction (e.g., GEN-
SCAN) are available. We address this shortcoming herein, in
addition to proposing newly developed DNA symbolic-to-nu-
meric mappings and gene prediction features. It is our belief
that a system combining improved DSP techniques with existing
data-driven methods could offer a level of gene prediction accu-
racy higher than that offered by existing data-driven methods.

This paper is organized as follows. Section II reviews existing
methods for DNA numerical representation and DSP-based
methods for gene and exon feature extraction from the DNA
sequence. In Section III, newly developed DNA represen-
tations and gene prediction features are discussed. Selected
existing statistical approaches and a proposed DSP-statistical
combination for acceptor splice site detection are presented in
Section IV. Existing and newly proposed DNA representations,
DSP-based gene and exon prediction features, and acceptor
splice site detection methods are then compared using standard
datasets and evaluation measures, as explained in Section V.
Evaluation results and discussion are given in Section VI.

II. DNA NUMERICAL REPRESENTATION AND

FEATURE EXTRACTION

A. DNA Numerical Representations

In recent years, a number of schemes have been introduced
to map DNA nucleotides into numerical values. Some possible

desirable properties of a DNA numerical representation in-
clude: 1) each nucleotide has equal “weight” (e.g., magnitude),
since there is no biological evidence to suggest that one is
more “important” than another; 2) distances between all pairs
of nucleotides should be equal, since there is no biological
evidence to suggest that any pair is “closer” than another;
3) representations should be compact, in particular, redundancy
should be minimized; and 4) representations should allow
access to a range of mathematical analysis tools.

The binary or Voss representation [20] is currently the
most popular scheme, which maps the nucleotides , , ,
and into the four binary indicator sequences , ,

, and showing the presence (e.g., 1) or absence
(e.g., 0) of the respective nucleotides. Both the -curve [21]
and tetrahedron [22] methods reduce the number of indicator
sequences from four to three in a manner symmetric to all four
components. The Voss and tetrahedron representations have
been shown to be equivalent representations for the purpose of
power spectra computation [28]. The complex representation
[18], [23] reflects some of the complementary features of the
nucleotides in its mathematical properties. As an alternative
to the typical complex representation of DNA nucleotides,
certain complex weights for each of the four bases can also be
calculated and employed with the binary indicator sequences
[18]. In the quaternion representation of DNA symbols [24],
pure quaternions are assigned to each symbol. It has been
conjectured that the quaternion approach can improve DNA
pattern detection in the spectral domain through use of the
quaternionic Fourier transform [24]. In the EIIP (electron-ion
interaction potential) method [25], the electron-ion interaction
potential (related to the quasi-valence number) associated with
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each nucleotide is used to map DNA character strings into
numerical sequences. The EIIP is just one example of a real
number representation. Another can be obtained by attaching
digits to the four nucleotides: , , ,
and [23]. However, this structure implies that purines
( or ) are in some respect “greater than” pyrimidines ( or

). Similarly, the representation , , , and
suggests that and . This representation is

an example of a Galois field assignment, upon which symbolic
Galois field operations are possible [26]. Another real-number
representation maps , , , and

, similar to the complementary property of the
complex method. These assignments of real numbers to each
of the four DNA characters do not necessarily reflect the
structure present in the original DNA sequences. Alternatively,
to calculate weights representing the actual participation of
each symbol in the detected pattern, a linear transform and
optimization can be performed on the DNA sequences [29].
The internucleotide distance method [27] replaces each DNA
nucleotide with an integer representing the distance between
the current nucleotide and the next similar nucleotide.

Each of the existing DNA representations offer different
properties, and map the DNA sequences into between one and
four numerical sequences. Many existing methods, such as
Voss [20], -curve [21], and tetrahedron [22], map the DNA
sequence to three or four numerical sequences, potentially
introducing redundancy in the representation. The assignment
of arbitrary numbers to each of the four DNA characters in
EIIP [25] and other real number representations [23], [26]
does not necessarily reflect the structure present in the original
DNA sequence. Representations such as quaternions [24] are
limited to specific mathematical analysis tools. For example,
a discrete quaternion Fourier transform (DQFT) [41] based
spectral analysis is required to detect certain DNA patterns.
Furthermore, existing DNA representations do not fully exploit
the structural differences of protein coding and noncoding
regions to facilitate digital signal processing based gene and
exon prediction features. These issues are addressed in the
DNA representations proposed in Section III-A.

B. DSP-Based Features for Gene and Exon Prediction

Periodicities of 3, 10.5, 200, and 400 have been reported in
genomic sequences [30]. In exons, the occurrence of identical
nucleotides in identical codon positions is the basis for a period-
icity of three interpretation in these regions [31]. The period-3
behavior of exons has been widely used to identify these regions
using DSP-based methods, following conversion to numerical
sequences.

The discrete Fourier transform (DFT), the most commonly
used method for spectrum analysis of a finite-length numerical
sequence of length , is defined as [36]

(1)

Equation (1) can be used to calculate DFTs for numerical
sequences representing DNA sequence portions, for example
each of the four binary indicator sequences (i.e., , ,

, and ). The periodicity of 3 in exon regions of a
DNA sequence suggests that the DFT coefficient corresponding
to (where is chosen to be a multiple of 3) in each
DFT sequence should be large [18]. Note that the calculation
of the DFT at a single frequency is sufficient, so
that the Goertzel algorithm [37], which reduces the cost of
single point DFT computation by almost a factor of two, can
be employed. Various DFT based spectral measures exploiting
the period-3 behaviour of exons for the identification of these
regions have been proposed. The spectral content (SC) measure
[32] combines the individual DFTs (i.e., , , ,
and ) to obtain a total Fourier magnitude spectrum of the
DNA sequence, as follows:

(2)

The GeneScan program [32], based on the SC measure, com-
putes the signal-to-noise ratio of the peak at as

, where represents a longer-term average of the
spectral content defined in (2). Regions having are as-
sumed to be protein coding (exon) regions. The optimized SC
measure [18] assigns complex weights , , , and to each of
the four DFTs , , , and in (2). These
weights are calculated using an optimization technique applied
to the known genes of a given organism. However, one can also
apply complex conjugate pairs and . The spec-
tral rotation (SR) measure [33] rotates four DFT vectors ,

, , and clockwise, each by an angle equiva-
lent to the average phase angle value in coding regions, to make
all of them “point” in the same direction. The SR measure also
divides each term by the corresponding phase angle deviations
to give more weight to exonic distributions. The feature

(3)

where and are the means and standard deviations of
the phase angle value in coding regions, has been used for the
detection of exons, and was shown to give better performance
than the SC (2) measure at a 10% false positive gene detection
rate [33]. Note that all DFT-based techniques suffer from spec-
tral leakage, due to the finite-length analysis window, which in-
troduces small contributions from signal frequencies other than
those at the frequency .

Autoregressive (AR) methods provide an alternative, more
compact characterization of the signal spectrum. Particular ad-
vantages of the AR technique are that it requires relatively few
base pairs to calculate the AR model (which is convenient if
the exon regions are short and/or closely spaced), and that it
provides a compact estimate of the signal spectrum. It has been
shown that AR spectral estimation using the Burg algorithm and
improved covariance analysis performs better than the DFT for
the detection of period-3 behaviour in short genomic sequences
[34]. However, the selection of the model order is crucial in this
approach, since choosing too low or too high will result in un-
necessarily smoothed or spurious modeling of spectral peaks,
respectively. Note also that AR models cannot reasonably be ap-
plied to binary indicator sequences, since these could not have
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resulted from an AR process. A possible solution to the problem
is bandpass filtering of numerical sequences before their appli-
cation to AR modeling.

In order to reduce the spectral leakage present in DFT-based
exon prediction, a larger window size is required, which implies
longer computation time and also compromises the base-do-
main resolution. The infinite impulse response (IIR) antinotch
(AN) filter approach in [35] attempts to address these problems.
The magnitude response of the antinotch filter has a sharp peak
at , which preserves only period-3 components. The
individual outputs of the four binary indicator sequences can
be combined in a sum-of-squares manner. It has been shown in
[35] that digital filter based period-3 detection results are com-
parable to those of the DFT-based SC measure given by (2).

The autocorrelation function (ACF) is a measure of how well
a signal matches a time-shifted version of itself, as a function of
the time shift. Practically, the ACF will produce a peak if sig-
nificant correlation exists at . Besides period-3 detection,
DNA sequences have been widely analyzed for other correla-
tions in [20], [31], [38], [39]. Li [40] gives a critical review of
the study of correlation structures.

The identification of protein coding regions is difficult
mainly due to the noncontiguous and noncontinuous nature of
eukaryotic genes. Despite the existence of many DSP-based
approaches and also data-driven approaches, the accuracy of
exon prediction is still limited and needs to be improved. More-
over, the existing approaches only rely on the identification of
period-3 property of exons, and do not fully exploit efficient
DNA representations and other complementary features re-
quired to separate protein coding and noncoding nucleotides.
These problems have been addressed in new DSP-based gene
and exon prediction features, proposed in Section III-B.

III. NEW DNA REPRESENTATIONS AND DSP-BASED FEATURES

FOR GENE AND EXON PREDICTION

A. DNA Numerical Representations

1) Paired Numeric: The paired numeric representation for
gene and exon prediction [42] exploits one of the differential
properties of exons and introns, according to which introns are
rich in nucleotides “ ” and “ ” whereas exons are rich in nu-
cleotides “ ” and “ ” [43]. Furthermore, the DFT phase angle
histogram distributions for coding and noncoding regions of
human datasets have been shown to give smaller and nearly
equal values of angular mean for distributions of nucleotides
“ ” and “ ” than those of “ ” and “ ” [42]. To fully exploit
both of these properties, these nucleotides - - can be
paired in a complementary manner and values of and can
be used to denote - and - nucleotide pairs, respectively. A
similar approach was used by Datta and Asif [44]; however, no
motivation for the “ - ” and “ - ” pairing was given. “ - ”
and “ - ” are complementary pairs, joining opposite strands
of double helix DNA through hydrogen bonds. However, this is
not the reason for their pairing here, as only one strand is used
for the computational analysis of DNA. This representation in-
corporates a very useful DNA structural property, in addition to
reducing complexity.

2) Frequency of Nucleotide Occurrence: It has been shown
in [42] that the four DNA nucleotides differ considerably in
their occurrence in exonic regions, and that the fractional oc-
currence of any particular nucleotide is reasonably consistent
across the Burset/Guigo1996 [10], HMR195 [11], and GEN-
SCAN learning [45] datasets considered therein. It has been
further observed that the frequency of nucleotide occurrence in
exons is a key parameter for any DNA representation to be used
for the detection of these regions. According to the frequency
of nucleotide mapping [42], nucleotides are represented by their
fractional occurrences in exons of a training database.

B. DSP-Based Features for Gene and Exon Prediction

1) Paired and Weighted Spectral Rotation (PWSR) Measure:
The PWSR measure [46] incorporates a statistical property of
eukaryotic sequences, according to which introns are rich in the
nucleotides “ ” and “ ” whereas exons are rich in nucleotides
“ ” and “ .” This information leads to an alternative property
to the well-known period-3 behavior of exons. In this method,
the DNA sequences are first converted into two binary indicators,

- and - . Using training data from DNA sequences
of the same organism, the means and standard deviations
of the distributions of DFT phase angle averaged over coding re-
gions, i.e., one phase angle value per coding region, are calcu-
lated. Weights based on the frequency of occurrence of nu-
cleotides “ or ” and “ or ” in coding regions of the training
data are also calculated. The expression given in (4) can then be
used as a feature, along one direction of the DNA sequence

-

-
- -

-

-
- - (4)

where denotes the forward and reverse directions of
DNA sequence, and - - are the mean
and standard deviation values obtained from distributions of the
DFT phase angle averaged over coding regions of the training
data, are frequency of occurrence weights from training
data, and are the sliding DFT windows of two indicator
sequences. The PWSR is calculated in both directions of the
DNA sequence, and combined as

(5)

Note that due to paired indicators, a DFT in the reverse di-
rection of the same DNA strand is equivalent to a DFT on its
complementary strand.

2) Paired Spectral Content (PSC) Measure: The PWSR
measure is a data-driven frequency domain method for gene and
exon prediction, which requires training from DNA sequences of
the same organism. A more general method, known as the paired
spectral content (PSC) measure [47], first converts the DNA se-
quence into singlenumerical sequences using the paired-numeric
representation, as discussed in Section III-A-I, then combines
forward and backward DFTs on the same DNA sequence

(6)
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where and are DFTs of the indicator sequence
in the forward and reverse directions. Contrary to the SR

and PWSR measures, the PSC measure can be applied to the se-
quences taken from any organism, i.e., PSC is not an organism-
specific measure.

3) “Time-Domain” Algorithms: In the following approaches
[48], DNA sequences are first converted into Voss indicator se-
quences, which are passed through a second-order resonant filter
with a center frequency of (similar to [35]) before being
input to either algorithm. This prefiltering helps to remove spec-
tral components at , , , which arise from
the application of correlation-based approaches to a binary in-
dicator sequence at a base-domain lag of 3.

Average magnitude difference function (AMDF)—the av-
erage magnitude difference function (AMDF) has long been
used in speech processing, and is defined for a discrete signal

as a function of the period as [49]

(7)

where is the window length. The AMDF, with , is an
efficient time-domain algorithm for gene and exon prediction
[48]. Practically, the AMDF will produce a deep null if signifi-
cant correlation exists at period .

Time domain periodogram (TDP)—the time domain peri-
odogram (TDP) is an algorithm used for periodicity detection
in sunspots and pitch detection for speech processing [50]. Ac-
cording to this algorithm, the -point data are first arranged in a
matrix, with rows containing subsequences of length equal
to the period being tested, where is the window length.
The columns of the matrix are summed to obtain the TDP vector
of size , as follows:

(8)

The final estimate of the degree of periodicity at period is
derived as follows:

(9)

It has been shown in [50] that for large , has a very
sharp peak if correlation exists at period , enabling accurate
detection of periodicity.

4) Singular Value Decomposition (SVD): The singular value
decomposition (SVD) can be applied to a rectangular data
matrix , decomposing it into matrices , , and [51], as
follows:

(10)

where , and , i.e., and are orthog-
onal. The singular values of are square roots of the eigen-
values from or , where here comprises the frames
of numeric DNA sequence values organized into a rectan-
gular matrix, where we choose . A linear combination of

the largest singular values of all frames obtained using all four
binary indicator sequences can then be used for the coding/non-
coding decision. SVD-based period-3 detection has also been
enhanced using bandpass filtering of the individual binary indi-
cator sequences, emphasizing the period-3 behavior [52].

5) Time-Frequency Hybrid (TFH) Measure: The time-fre-
quency hybrid (TFH) measure [46] combines magnitude and
phase-based features, acknowledging earlier results by Kotlar
and Lavner [33] showing that additionally considering the DFT
phase angle is more informative than the magnitude alone. Fea-
tures from the time-domain AMDF method and frequency-do-
main PWSR measure are normalized to the range [0, 1] and then
summed to produce a TFH feature.

6) Multidimensional Features: For all existing methods and
new methods discussed in Sections III-B1–V, features are com-
bined, typically using a sum-of-squares approach as in (2), to
produce a 1-D feature for comparison with some predetermined
threshold. Since a sum-of-squares approach will not necessarily
produce optimal feature fusion, multidimensional features have
been recently proposed in [53] and [54]. One such scheme uses
the PWSR and AMDF features from the TFH measure in [46],
and transforms each separately using the DCT, to decorrelate
them with energy localized to the first few coefficients. A 5-D
feature, comprising one transformed PWSR coefficient and all
four transformed AMDF coefficients, is then formed. In an-
other such scheme, the linear predictor coefficients are treated as
multidimensional AR-based features, modeling coding and non-
coding regions in terms of their spectral characteristics within
the given window length. The optimized AR based feature, with
model order 12 and window size 180 bp is then concatenated
with the 5-D TFH feature, as shown in [54]. The resultant higher
dimensional feature set is then used for training and testing of
the multidimensional feature based classification system.

IV. ACCEPTOR SPLICE SITE DETECTION METHODS

The accurate prediction of eukaryotic protein coding regions
requires methods for the detection of their end-points. The
intron-exon border is known as the acceptor splice site (or
end of the intron) and consists of a consensus dinucleotide
“AG” as the last two nucleotides of the intron. Due to the
common occurrences of this dinucleotide at locations other
than acceptor sites throughout a gene sequence, detection is
very difficult. In order to apply data-driven and other methods
herein, the candidate acceptor site sequences were extracted
as windows of 140 nucleotides around each consensus dinu-
cleotide “AG,” similarly to [55]. The nucleotide positions were
then labeled relative to the consensus dinucleotide “AG,” which
was assumed to occupy the positions and . From the
end to the end of a genomic sequence, these labels would
be: . In the case
of a true acceptor splice site, the first 70 positions represent
intronic nucleotides, while the last 70 labels can be treated as
exonic nucleotides, as shown in Fig. 3.

A. Existing Methods

Weight matrix method (WMM)—this method assumes that
the probabilities of the nucleotides at each position are indepen-
dent of each other [56]. According to [57], the probabilities of
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Fig. 3. Looking from the 5 end of DNA to its 3 end, the acceptor splice site
is essentially an intron-to-exon border and consists of a consensus dinucleotide
“AG” as the last two nucleotides of the intron.

generating a signal of length under positive and negative
WMMs of the pyrimidine-rich acceptor region are

(11)

where is the probability of generating nucleotide at posi-
tion of the signal, which can be estimated from the positional
frequencies of nucleotides in the training sets of the true and
false acceptor site sequences. Therefore, the positive and nega-
tive probabilistic models correspond to learning using true and
false acceptor site sequences, respectively. The log of the ratio
of the WMM generated under a positive model to the WMM
generated under a negative model can be used as a score to dis-
criminate true acceptor splice sites from false.

Weight array method (WAM)—the WAM explores and cap-
tures the dependencies between adjacent positions, in contrast to
the WMM, which considers each position independently [58],
[59]. In [57], probabilities of generating a signal of length
under positive and negative Weight Array Models of the pyrim-
idine-rich acceptor region are computed as

(12)

where is the conditional probability of generating nu-
cleotide at position , given nucleotide at position .
This quantity can be calculated from the ratio of the frequency
of dinucleotides and at positions and , to the fre-
quency of the nucleotide at position .

Windowed weight array method (WWAM)—the WWAM is a
second-order WAM model, in which nucleotides of the branch
point region are generated conditional on the nu-
cleotides of the previous two positions [45]. In order to have
enough data to model these second-order conditional probabili-
ties, data from a window of adjacent signal positions are pooled.
Here, the second-order conditional probability at position is
calculated as the average of the conditional probabilities at po-
sitions , , , , and . The WWAM has been
combined with the WAM over the region to compute
signal ratio scores for acceptor site recognition in GENSCAN
[6], [45].

B. Proposed DSP-Statistical Hybrid Approach

Since the exon region starts from the next nucleotide to the
consensus dinucleotide “AG” of the true acceptor sites in the
direction, the detection of the presence or absence of period-3
behavior, as determined by signal processing-based methods, in

this region of the candidate acceptor sites can be used to dis-
criminate the true sites from their false counterparts. For this
purpose, we employ the AMDF method in conjunction with the
“paired numeric” DNA symbolic-to-numeric mapping scheme
using the forward-backward window attribute, similar to [42].
These methods were selected based on experimental work from
Sections VI-A and B. Furthermore, due to the possibility of a
very small exonic region in candidate acceptor sites (e.g., 70 bp)
a larger window is inadvisable. With a smaller window (69 base
pairs for the AMDF), a score “ “ for each candidate acceptor
site based on the ratio of the sum of period-3 features (denoted
here as ) in putative coding regions to that of putative non-
coding regions

(13)

is proposed to discriminate the true and false acceptor sites,
where and are, respectively, the upper and lower indices
for the period-3 summations in the putative coding (denoted
) and noncoding (denoted ) regions. DSP-based methods

are attractive because they mostly do not require any training
on the genomic data before use, unlike the WMM, WAM, and
WWAM approaches, and also because they are derived from
different information from these approaches. Hence, we also
combine the DSP-based method with WAM to improve the dis-
crimination power of acceptor splice site detection. Empirically,
we found the WAM model of the region , and DSP-
based method over the region to be op-
timum for the recognition of human acceptor splice sites.

V. EVALUATION

In this section, the evaluations of different DNA representa-
tions, feature extraction methods, and acceptor splice site detec-
tion methods (reviewed in Sections II–IV) are described, using
standard eukaryotic datasets.

A. Data Sets

Table I summarizes the Burset/Guigo1996 [10], HMR195
[11], and GENSCAN [45] standard datasets, used herein.
During the original formation of these datasets, certain common
rules were followed. For example, each sequence consists of
one complete gene starting with an “ATG” codon and ending
with one of the three possible stop codons (TAA, TAG, or
TGA). The protein coding genes do not have any in-frame stop
codons. Moreover, the multiexon genes have “GT” and “AG”
consensus dinucleotides for the donor and acceptor splice sites,
respectively.

The data sets referred to, respectively, as the GENSCAN
learning and test sets comprise the 188 multiexon gene se-
quences listed in [45, Appendix A] and 64 available multiexon
gene sequences listed in [45, Appendix B]. The number of
true/false acceptor site sequences of GENSCAN learning
and test sets were 1031/156107 and 317/44301, respectively,
when extracted from windows of 140 nucleotides around each
consensus dinucleotide “AG.”
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TABLE I
SUMMARY OF DATASETS

B. System Configurations

For the comparison of DNA symbolic to numeric mappings,
evaluated on the exon detection problem, the GENSCAN
datasets (learning and test sets) were used for training (where
needed) and testing of DNA representations. The GENSCAN
test set was mapped into all DNA representations, and the
DFT-based SC measure was then applied for gene and exon
prediction in each case. A constant length rectangular window
( [18]) was used for all types of DFT calculations. For
the quaternion representation, the discrete quaternion Fourier
transform (DQFT) [41] was employed to calculate the SC
measure.

The second evaluation compared the various DSP-based exon
detection methods discussed in Sections II and III. The Burset/
Guigo1996, HMR195, and GENSCAN datasets were all used.
Note that the SR, PWSR, and TFH methods are organism-spe-
cific and can only be trained and tested on datasets consisting
of gene sequences taken from one particular organism, such as
GENSCAN in our case. In 1-D feature extraction, a rectangular
window of constant size (consistent with previous
work [18], [32], [33]) was again used in DFT-based methods.
The AMDF, TDP, and SVD methods were prefiltered with a
bandpass filter tuned at , to emphasize the period-3 compo-
nent and de-emphasize all other components. In AR model im-
plementation, a model order of 40 and frame size of 135 were
used, as were found suitable in the preliminary work of [52].
A frame size of 81 was used for the SVD method, similar to
[52]. Empirically, we found a frame length of 117 suitable for
AMDF and TDP. A frame size of 117 was used for ACF, consis-
tent with the frame sizes for the other time-domain algorithms.
In multidimensional feature extraction, a constant window size
of was used for DFT-related features and frame size
of 117 was used for AMDF calculations. For AR modeling, a
model order of 12 and window length of 180 were used, as de-
termined in [54].

For exon prediction using multidimensional features, two
GMMs were trained, based on protein coding and noncoding
features of the GENSCAN learning set, respectively, from
which likelihood estimates were extracted as features during
testing on the GENSCAN test set, as explained in [54]. Em-
pirically, we found 32 mixtures optimal for training the GMM
parameters, and a diagonal covariance matrix was used.

Fig. 4. Nucleotide level measures of prediction accuracy.

In the evaluation of acceptor splice site detection, true and
false acceptor sites from the GENSCAN datasets (learning and
test sets) were used for training and testing of WMM, WAM,
WWAM, and the proposed DSP-based method.

Note that in all cases we do not actually perform the classifi-
cation to derive an exon/intron decision. Instead, we take advan-
tage of the fact that this is a 2-class classification problem and
give results across a range of different threshold settings/deci-
sion rules.

C. Evaluation Measures

In these evaluations, results are compared at the nucleotide
level, contrary to existing comparisons at exon level or gene
level, e.g., [33]. In exon-level detection, the feature value for one
point (i.e., nucleotide) in an exon being greater than a decision
threshold is sufficient for the detection of that particular exon.
The following measures were employed.

Sensitivity and Specificity—The prediction accuracy mea-
sures of sensitivity, specificity (similar to [10]) can be explained
with the aid of Fig. 4, where true positive (TP) is the number
of coding nucleotides correctly predicted as coding, false
negative (FN) is the number of coding nucleotides predicted
as noncoding, true negative (TN) is the number of noncoding
nucleotides correctly predicted as noncoding, and false positive
(FP) is the number of noncoding nucleotides predicted as
coding. The sensitivity gives the measure of the propor-
tion of coding nucleotides that have been correctly predicted
as coding. The specificity is the proportion of predicted
coding nucleotides that are actually from the coding region.

Receiver operating characteristic (ROC) curves—The re-
ceiver operating characteristic (ROC) curves were developed
in the 1950s as a technique for visualizing, organizing and
selecting classifiers based on their performance [60]. In the
exon-intron separation problem, an ROC curve explores the
effects on TP and FP as the position of an arbitrary decision
threshold is varied. The curve can be characterized as a single
number using the area under the ROC curve (AUC), with larger
areas indicating more accurate detection methods.

False positive (and specificity) versus sensitivity—in this
measure, the percentage of false positives and percentage speci-
ficity are calculated at different levels of percentage sensitivity.
A threshold output feature value Th at a particular level of
percentage sensitivity is the minimum value for which of
the exonic nucleotides have feature values greater than Th [45].

Detection of exonic nucleotides for false positive—the
percentage of exonic nucleotides detected for false positives
(where , 20, and 30) can also be calculated, generating
curves when the decision threshold is varied. False positives are
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Fig. 5. Comparison of single-sequence DNA representations for the exon de-
tection problem, evaluated on the GENSCAN test set.

TABLE II
SUMMARY OF RESULTS FOR SC-BASED EXON PREDICTION

USING GENSCAN TEST SET

an important problem due to the fact that intronic and intergenic
nucleotides make up more than 95% of the eukaryotic genome.

VI. RESULTS AND DISCUSSION

A. DNA Representation Results

All DNA representations were compared for the purpose of
identifying protein coding regions, using the DFT based SC
measure to characterize period-3 behavior in the exonic regions
for the GENSCAN test set. Specificity versus sensitivity and
AUC results for single-sequence representations are given in
Fig. 5 and Table II, respectively. Note that “real-numbers 1”
refers to , , , ; “real-numbers 2” is

, , , ; and “real-numbers 3” is ,
, , . These results show that the

recently proposed “paired numeric” is the most accurate repre-
sentation for this application, due to the fact that the approach
exploits a key statistical property (according to which introns

are rich in nucleotides “ ” and “ ” whereas exons are rich in
nucleotides “ “ and “ “) for discriminating between structures
of the genomic protein coding and noncoding regions. The fre-
quency of nucleotide occurrence method also gives promising
results, due to the fact that fractional occurrences of the four
nucleotides in protein coding regions is different to those of the
noncoding regions. It is perhaps surprising that the paired nu-
meric and frequency of nucleotide occurrence representations
provide such a marked improvement over other real number rep-
resentations, suggesting that real number mappings need to be
selected very carefully for a given application. It is also perhaps
surprising that the paired numeric and frequency of nucleotide
occurrence representations, which exhibit few of the conceptu-
ally desirable properties of DNA representations mentioned in
Section II-A, are the most successful.

Table II shows that the -curve and Tetrahedron schemes are
approximately equal, and give improved gene and exon predic-
tion than real number approaches for a complexity equivalent
to three sequences. Compared with the paired numeric and fre-
quency of nucleotide representations, however, their higher di-
mension does not produce gains in detection accuracy.

The four-sequence representations: Voss, complex, quater-
nion, and EIIP, all give equivalent DFT-based gene and exon
prediction accuracy, as seen in Table II. This result was expected
as they are all variations on the same representation. Further-
more, their performance is equal to the three-sequence tetrahe-
dron representation, which is also a variation of this represen-
tation. It has also recently been shown in [61] that the three-se-
quence -curve method is theoretically equivalent to the Voss
approach. By comparison with four-sequence schemes, the re-
cently proposed paired numeric and frequency of nucleotide oc-
currence methods reveal improved DFT-based gene and exon
prediction with 75% less downstream processing. We conjec-
ture that further improvements in gene and exon prediction can
be achieved by incorporating more DNA structural properties in
existing or new DNA symbolic-to-numeric representations.

Finally, we note that small improvements in detection accu-
racy can be gained through the use of forward and backward
sliding window DFTs, at the cost of increased complexity.

B. Period-3 Exon Detection Results

The results and discussion presented in this section bench-
mark the period-3 methods for gene and exon prediction in
eukaryotes on a large scale, using three standard genomic se-
quence datasets. ROC plots using Burset/Guigo1996, HMR195
and GENSCAN test set are shown, respectively, in Figs. 6–8.
Table III summarizes all period-3 detection results giving
AUC values, and exonic nucleotide detection rates for
false positive using all three datasets. It can be observed that
for the vertebrate dataset, the recently proposed AMDF and
TDP outperform other measures, giving consistently improved
exonic detection. Time-domain methods are attractive because
they are computationally efficient and perform better for an
identification of short and/or closely spaced coding regions,
using smaller window lengths [48]. Furthermore, the recently
proposed frequency-domain DFT based PSC measure improves
on the SC measure, with 50% less DFT processing. Interest-
ingly, the ACF, AR, and AN filter methods give very poor
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Fig. 6. ROC curves for period-3 detection, using the Burset/Guigo1996 dataset.

Fig. 7. ROC curves for period-3 detection, using the HMR195 dataset.

Fig. 8. ROC curves for period-3 detection, using the GENSCAN test set.

identification of period-3 regions, and a likely cause is the lack
of bandpass filtering as used in the AMDF and TDP methods,

as discussed in Section III-B3. In results using the HMR195
dataset, the AMDF and TDP also give improved performance
compared with other methods, similar to the results obtained
using Burset/Guigo1996 dataset.

Since the Burset/Guigo1996 (vertebrate) and HMR195
(mammalian) datasets contain mixed genomic sequences (i.e.,
sequences taken from different organisms), the SR, PWSR,
and TFH methods, which require training data, can not be
applied to these datasets in a straightforward manner. Hence,
for comparison between all methods, the GENSCAN test
set was employed. It is quite clear from the results in Fig. 8
that the data-driven, DFT-based PWSR measure outperforms
well-known 1-D frequency-domain methods, giving consis-
tently fewer false positives (and higher levels of specificity)
at each sensitivity level and improved nucleotide detection.
By comparison with other DFT-based measures, the PWSR
method reveals relative improvements of 15.2% and 10.7%,
respectively, over the SC and SR measures in the detection of
exonic nucleotides at a 10% false positive rate. The recently
proposed paired spectral content (PSC) method also improves
on the SC and SR measures. One reason for DFT-based
methods (i.e., SC, SR, PWSR, and PSC measures) giving
poorer accuracy than time-domain algorithms (e.g., AMDF,
and TDP), is their relatively large window size (351). Recent
investigations [62] suggest that the optimum window length for
DFT-based methods depends to a large extent on the average
length of exon regions of the dataset being used, whereas
for time-domain algorithms, this length lies within a short
range. The time-frequency hybrid (TFH), which combines the
complementary PWSR and AMDF methods, provides a further
small gain in accuracy over the individual PWSR and AMDF
methods.

Finally, the multidimensional feature-based methods give
more accurate gene and exon prediction than all 1-D methods.
By comparison with the best 1-D method (TFH), the recently
proposed multidimensional TFH and AR-TFH methods reveal
relative improvements of 4.7% and 11.4%, respectively, in the
detection of exonic nucleotides at a 10% false positive rate.

C. Acceptor Splice Site Results

After training on the GENSCAN learning set, the proposed
DSP-statistical hybrid acceptor site detection method from
Section IV-B was compared with WMM, WAM and WWAM
using the GENSCAN test set. Fig. 9 shows ROC curves for all
methods using the GENSCAN test set, from which it can be
observed that the ROC curve for the proposed method exhibits
better discrimination power for the detection of acceptor splice
sites. The DSP-based method alone is notably poorer than
data-driven methods, presumably due to the fact that it relies
solely on the accurate identification of the period-3 behaviour
on one side of the “AG” junction (i.e., consensus dinucleotide
for acceptor sites). The periodicity of three in exons is often
weak, and existing DSP-based methods are not well equipped
to identify this periodicity over a short length of the sequence
(e.g., 69 in our case). However, DSP-based methods combined
with data-driven methods still improve the accuracy of predic-
tion, because the two approaches exploit different information.
Table IV summarizes the comparison, giving results for AUC,
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TABLE III
SUMMARY OF PERIOD-3 DETECTION RESULTS ON THREE DATASETS

Fig. 9. ROC plot for acceptor site detection, using GENSCAN test set.

false positive and percentage specificity at different levels of
percentage sensitivity, for all methods, using the GENSCAN
test set. The proposed DSP-statistical hybrid method clearly
achieves a larger area under the ROC curve, consistently fewer
false positives and higher percent specificities compared with
all three existing methods. By comparison with the WWAM
method used in gene-finding program GENSCAN [6], the
number of false positives across different sensitivity levels in
the proposed method shows an average relative improvement
of 43%.

According to the results of subsection B, further gains
might be expected from using multidimensional feature-based
methods; however, these require suitable training data for
estimating the GMM parameters and, hence, suffer similar
drawbacks to existing data-driven techniques in terms of re-
quiring sufficient organism-specific training data.

TABLE IV
SUMMARY OF ACCEPTOR SPLICE SITE DETECTION

RESULTS USING GENSCAN TEST SET

VII. CONCLUSION

In summary, a number of digital signal processing-based
methods for eukaryotic gene prediction have been proposed,
and these have been evaluated alongside many other DSP-based
methods. Firstly, DNA symbolic-to-numeric mappings were
compared in terms of both computational complexity and
relative accuracy for the gene and exon prediction problem.
From these experiments, the recently proposed paired numeric
representation was shown to give an improvement of 2% over
the Voss binary indicator sequences in terms of area under
the ROC curve for gene and exon prediction, with 75% less
downstream processing, when evaluated on the GENSCAN test
set.

All 1-D output feature methods for gene and exon predic-
tion were then evaluated on the standard genomic datasets
Burset/Guigo1996, HMR195 and GENSCAN. In terms of
gene and exon prediction accuracy, the recently proposed
TFH, AMDF, TDP, SVD, PWSR, and PSC methods exhibited
relatively more accurate gene and exon prediction, improving
on the well-known DFT based-SC measure by 4% to 9% in
terms of area under the ROC curve. In light of the weaknesses
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and strengths of the 1-D genomic period-3 detection methods,
we recommend the AMDF and TFH for nondata-driven and
data-driven gene detection, respectively. Furthermore, recently
proposed multidimensional output feature methods were shown
to give improved gene and exon prediction over their 1-D
counterparts. By comparison with the most accurate 1-D mea-
sure, the multidimensional methods yielded improvements of
5% to 11% in terms of relative increase in exonic nucleotides
detected at a 10% false positive rate, when evaluated on the
GENSCAN test set. Evaluations of all schemes herein have
been performed on large databases and using metrics calculated
at the nucleotide level, in contrast to much of the previous
literature on the topic.

Finally, we have also proposed a new DSP-statistical hybrid
technique for acceptor splice site detection. Results show that
DSP-based approaches to gene and exon prediction alone
are unlikely to rival current data-driven techniques such as
GENSCAN or AUGUSTUS. The proposed DSP-statistical
combination for the detection of acceptor splice sites, which
achieves a performance improvement of 43% over WWAM
(used in GENSCAN), is illustrative of the potential DSP-based
techniques still offer in terms of improving the state of the art.
Future directions may include more accurate identification of
exonic/intronic end-point signals (i.e., start codon, donor splice
site, acceptor splice site, and stop codons) using multidimen-
sional DSP-based features, and combining signal processing
based work with data-driven methods to advance the state of
the art in eukaryotic gene prediction algorithms.
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