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Abstract

With the exponential growth of genomic sequences, there is an increasing demand to accurately identify protein coding regions (exons)
from genomic sequences. Despite many progresses being made in the identification of protein coding regions by computational methods
during the last two decades, the performances and efficiencies of the prediction methods still need to be improved. In addition, it is
indispensable to develop different prediction methods since combining different methods may greatly improve the prediction accuracy. A
new method to predict protein coding regions is developed in this paper based on the fact that most of exon sequences have a 3-base
periodicity, while intron sequences do not have this unique feature. The method computes the 3-base periodicity and the background
noise of the stepwise DNA segments of the target DNA sequences using nucleotide distributions in the three codon positions of the DNA
sequences. Exon and intron sequences can be identified from trends of the ratio of the 3-base periodicity to the background noise in the
DNA sequences. Case studies on genes from different organisms show that this method is an effective approach for exon prediction.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

An important step in genomic annotation is to identify
protein coding regions of genomic sequences, which is a
challenging problem especially in the study of eukaryote
genomes. In an eukaryote genome, protein coding regions
(exons) are usually not continuous, but are flanked by
noncoding regions (introns). Due to the lack of obvious
sequence features between exons and introns, effectively
distinguishing protein coding regions from noncoding
regions is a challenging problem in bioinformatics.

During the last two decades, a variety of computational
algorithms have been developed to predict exons (for
reviews, Ficket and Tung, 1992; Fickett, 1996; Zhang,
2002; Mathé et al., 2002). Most of the exon-finding
algorithms are based on statistics methods, which usually
use training data sets from known exon and intron sequences
to compute prediction functions. As examples, GenScan

algorithm (Burge and Karlin, 1997) measured distinct
statistics features of exons and introns within genomes and
employed them in prediction via hidden Markov model
(HMM); MZFF method (Zhang, 1997) was developed for
predicting protein coding regions using quadratic discrimi-
nant analysis of different sequence characters of exons and
introns. As combining different gene prediction methods
may increase the accuracy of the prediction greatly,
development of different effective gene prediction algorithms
is one of the fundamental efforts in gene prediction study.
During recent years, signal processing approaches have

been attracting significant attentions in genomic DNA
research and have become increasingly important to
elucidate genome structures because they may identify
hidden periodicities and features which cannot be revealed
easily by conventional statistics methods. After converting
symbol DNA sequences to numerical sequences, signal
processing tools, typically, discrete Fourier transform
(DFT) or wavelet analysis, can be applied to the numerical
vectors to study the frequency domain of the sequences
(Anastassiou, 2000; Wang and Johnson, 2002; Kauer and
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Blocker, 2003; Vaidanahan and Yoon, 2004). Using the
signal processing methods, a variety of gene prediction
algorithms have been developed (Tiwari et al., 1997;
Anastassiou, 2000; Kotlar and Lavner, 2003; Jin, 2004;
Gao et al., 2005). Tiwari et al. (1997) explored the measure
of spectral content (SC) in DNA sequences based on the
fact that the 3-base periodicity, identified as a pronounced
peak at the frequency N=3 of the Fourier power spectrum
of the DNA sequences (N is the length of the DNA
sequence), is prevalent in most protein coding regions, but
does not exist in noncoding regions (Tsonis et al., 1991;
Voss, 1992; Chechetkin and Turygin, 1995; Dodin et al.,
2000). Anastassiou (2000) presented an optimized SC
measure of DNA sequences for gene prediction. Kotlar
and Lavner (2003) utilized spectral rotation measure based
on the arguments of the DFT to develop a novel gene
prediction algorithm, which was later improved by Jin
(2004). Gao et al. (2005) combined the 3-base periodicity
and the fractal features of DNA sequences to improve gene
prediction methods.

Most of the DFT based gene finding algorithms use a
short-sequence window approach (Tiwari et al., 1997; Yan
et al., 1998; Anastassiou, 2000), in which a fixed-length
window is used to slide a DNA sequence to compute the
Fourier power spectrum. However, this approach has
limitations. A small window frame causes more statistical
oscillation, resulting in more prediction errors, whereas a
large window frame may miss small exons or introns. The
arbitrary choices of window size made the short-sequence
window Fourier technique subject to bias. Furthermore,
the short-sequence window Fourier transform requires
much longer CPU time. It becomes a challenging problem
when finding genes for whole genomes as direct computa-
tion of Fourier transforms is time consuming.

It was demonstrated that the 3-base periodicity in a
DNA sequence is partly caused by the unbalanced
nucleotide distributions in the three coding positions in
the sequence (Fickett, 1982; Ficket and Tung, 1992; Tiwari
et al., 1997; Yin and Yau, 2005). In an exon sequence, the
nucleotide distribution in the three codon positions is
unbalanced, while in an intron sequence, the nucleotides
distribute uniformly in the three codon positions. The
reason of the unbalanced distribution is that proteins
prefer special amino acid compositions and thus nucleotide
usage in a coding region is highly biased (Ficket and Tung,
1992; Tiwari et al., 1997; Yin and Yau, 2005). This paper
presents an extension of the current gene prediction
algorithms (Tiwari et al., 1997; Anastassiou, 2000), called
EPND method (exon prediction via nucleotide distribu-
tions), which is based on the peak at the frequency of N=3
of the DFT and the frequencies of the nucleotides in the
three codon positions (position asymmetry measure) within
known genes. The algorithm is tested for identifying exons/
introns within known genes from several organisms in this
paper. Case studies indicate that the method described in
this paper is an effective protein coding region prediction
method in terms of accuracy and efficiency.

2. Methods and algorithms

2.1. Fourier spectrum analysis of DNA sequences

A symbolic DNA sequence, denoted as,
xð0Þ; xð1Þ; . . . ; xðN # 1Þ, is first converted to four binary
indicator sequences, uAðnÞ; uT ðnÞ; uCðnÞ, and uGðnÞ, which
indicate the presence or absence of four nucleotides, A, T,
C, and G, at the nth position, respectively (Voss, 1992;
Tiwari et al., 1997; Anastassiou, 2000). For instance, the
indicator sequence, uAðnÞ ¼ 0001010111 . . . ; indicates that
the nucleotide A is in the positions 4, 6, 8, 9, and 10 of the
DNA sequence.
The DFT converts a signal in the signal domain to a set

of new values in the frequency domain. For a signal of
length N, f ðnÞ; n ¼ 0; 1; . . . ;N # 1, its DFT is defined as
follows:

F ðkÞ ¼
XN#1

n¼0

f ðnÞe#i2pnkN (2.1)

where i ¼
ffiffiffiffiffiffiffi
#1

p
. The DFT power spectrum of a signal at

the frequency k is defined as:

PSðkÞ ¼ jF ðkÞj2; k ¼ 0; 1; 2; . . . ;N, (2.2)

where F ðkÞ is the kth DFT coefficient.
The DFT power spectrum of a DNA sequence is the sum

of the power spectrum of its four binary indicator
sequences (Silverman and Linsker, 1986; Tiwari et al.,
1997; Anastassiou, 2000):

PSðkÞ ¼ PSAðkÞ þ PST ðkÞ þ PSCðkÞ þ PSGðkÞ (2.3)

where PSAðkÞ;PST ðkÞ;PSCðkÞ and PSGðkÞ are the Fourier
power spectrum of the four indicator sequences uAðnÞ; uT
ðnÞ; uCðnÞ and uGðnÞ, respectively. Due to the symmetry
property of the DFT spectrum of real number signals, the
figures in this paper only show half of the Fourier spectrum
of DNA sequences.

2.2. Computing the 3-base periodicity and background noise
from nucleotide distributions of a DNA sequence

The asymmetry in the nucleotide distributions in the
three codon positions and its connection to the DFT peak
in N=3 at coding regions were addressed by Ficket (Fickett,
1982; Ficket and Tung, 1992). The 3-base periodicity
magnitude and background noise can be directly computed
from the nucleotide distributions (Ficket and Tung, 1992;
Yin and Yau, 2005). Let Fx1;Fx2;Fx3 be the occurrence
frequencies of the nucleotide x 2 fA;T ;C;Gg in the first,
the second and the third codon positions, respectively.
Then the 3-base periodicity magnitude can be computed as
follows:

PSðN=3Þ ¼
X

x¼A;T ;C;G

½F 2
x1 þ F2

x2 þ F2
x3

# ðFx1 ' Fx2 þ Fx1 ' Fx3 þ Fx2 ' Fx3Þ(. ð2:4Þ
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The background noise of a DNA sequence of length N,
represented as the average power spectrum E over all the
frequencies, is determined mainly by the length of the DNA
sequence (Yin and Yau, 2005). Thus, the ratio of the 3-base
periodicity signal to the background noise of a DNA
sequence, denoted as SNðNÞ, is defined as follows:

SNðNÞ ¼
PSðN=3Þ

N
. (2.5)

SNðNÞ can be interpreted as strength of the 3-base
periodicity per nucleotide. Based on the computational
simulation of computer generated sequences and verified
with 12 exons/introns from Yeast and C. elegans, it was
shown that SNðNÞ is equal to or larger than 2 for most
exon sequences (Yin and Yau, 2005, also refer to Fig. 3),
while it is less than 2 for most intron sequences. The
threshold value of the signal-to-noise is set to 2 in the gene
finding algorithm in this paper.

2.3. Algorithm for exon prediction by nucleotide distribution
(EPND)

For a DNA sequence of length N, let Dk denote the
DNA walk sequence of length k, i.e., Dk is the sub-region
of the DNA sequence ranging from the beginning to the
position k. To find exon regions and intron regions within
the given DNA sequence, the EPND algorithm is devel-
oped as follows, and the flow chart of the algorithm below
is shown in Fig. 1.

1. Set k ¼ 1.
2. Compute nucleotide distributions of Dk in the three

codon positions of Fxi (x 2 fA;T ;C;Gg, i 2 f1; 2; 3gÞ. The
nucleotide distribution of a DNA walk sequence of length
k can be obtained recursively from the DNA walk sequence
of length k # 1 with the occurring frequencies of the
nucleotides on the position k.

3. Compute the magnitude of the 3-base periodicity
PSðk=3Þ in Dk based on the formula (2.4).

4. Compute the ratio of 3-base periodicity to background
noise, SNðkÞ ¼ PSðk=3Þ=k, within the DNA sequence Dk.

5. Increase k by 1 and repeat step 2 to step 4, until
k ¼ N.

6. Compute the slope of SN at each position on the SN
plot as follows: since most of the exon or intron sequences
in a genome are longer than 50 base pairs, the slope at the
ith position is computed as ðSNðiÞ # SNði # 50ÞÞ=50, where
i is from 51 to N.

7. Set the nucleotide at each position to exon or intron
region as follows: if the slope at the position is larger than 0
and SN is larger than or equal to 2, set the nucleotide at the
position as exon nucleotide; otherwise, set it as intron
nucleotide.

8. Reduce local noise. If a DNA region less than 50 base
pairs is identified as an intron from step 7, and is flanked by
two exon regions, this region is often a false negative, and
is reset as exon region; similarly, if a DNA region less than
50 base pairs is identified as an exon from step 7, and is

flanked by two intron regions, this region is often a false
positive, and is reset as an intron region.

2.4. Improving prediction accuracy using different starting
points

For a long DNA sequence that may contain more than
two exons (or two introns), such as exon–intron–exon, the
accumulated signal-to-noise ratio of the last exon will
become low especially when the intron in between is long,
which may affect the accuracy of the prediction. It would
improve the algorithm if we divide a DNA sequence into
different sub regions. In addition, to reduce false exons and
false introns, we apply the algorithm at different arbitrary
starting points so that each nucleotide may be tested
multiple times. The following algorithm is developed to
improve exon prediction accuracy when using EPND
method:
1. If a DNA sequence is longer than 2000 base pairs (bp),

divide it to sub-sequences of 2000 base pairs.
2. For each 2000 base pairs sub-sequence, set P1 ¼ 1;

P2 ¼ 401;P3 ¼ 801;P4 ¼ 1201;P5 ¼ 1601 and P6 ¼ 2000
be the six even-spaced points.
3. Identify exon or intron nucleotides using EPND

method on the sub-sequence between point Pi and P6

where i ¼ 1; 2; 3; 4; 5. So each nucleotide after points P3 is
tested at least three times using EPND method from
different start points. A nucleotide is identified as an exon
nucleotide when it is predicated in an exon region in the
majority of the tests.

2.5. Database and measures for performance evaluation

The data set used for the evaluation of the performance
of the EPND method is Xpro (Gopalan et al., 2004), which
contains the eukaryotic protein coding DNA sequences
from GeneBank release 139. The data set was downloaded
from the Xpro web site as flat files (Xpro version: v.1.2,
2004, http://origin.bic.nus.edu.sg/xpro). One file, exonse—
intron—139.gz, contains protein coding regions (exons),
and the other file, intronseq—intron—139.gz contains
non-protein coding regions (introns). Both files consist of
DNA sequences and the corresponding header infor-
mation which indicates gene locus, organism that the genes
belong to, intron lengths and their corresponding positions
within the genes. Based on the intron positions in the
header sections, introns are conjugated with the corre-
sponding exons to form a full original gene structure
beginning with a start codon and ending with a stop codon.
The full length genes are used in this study to test algorithm
performance.
The performance of the EPND algorithm is measured in

terms of sensitivity, specificity and accuracy, which are
defined in the literature as follows (Burset and Guigo,
1996). The sensitivity, Sn ¼ TP=ðTPþ FNÞ, and the
specificity, Sp ¼ TN=ðTN þ FPÞ, where TP is the true
positive, which is the length of nucleotides of correctly
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predicted exons; TN is the true negative, which is the length
of nucleotides of correctly predicted introns; FN is the false
negative, which is the length of nucleotides of wrongly
predicted introns; and FP is the false positive, which is the
length of nucleotides of wrongly predicted exons. In other
words, Sn is the proportion of coding sequences that
have been correctly predicted as coding, and Sp is the
proportion of noncoding sequences that have been
correctly predicted as noncoding. The accuracy AC is
defined as the average of Sn and Sp.

3. Results and discussions

3.1. Features of the signal-to-noise ratios of DNA walks
from exons and introns

The 3-base periodicity uniquely exists in most exon
sequences, but it is not in the majority of intron sequences.
Thus, there is a pronounced peak in the Fourier spectrum
of an exon sequence. As an example to illustrate the 3-base
periodicity, Fig. 2 is the Fourier spectrum of an exon
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Fig. 1. Flow chart of the EPND exon finding algorithm.
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sequence and an intron sequence from the gene
AAM70818.2 of Drosophila melanogaster (fruit fly) (the
exon sequence is located from 1 to 670, and the intron from
671 to 1135), there is a distinct peak at the frequency N=3
ðN ¼ 670Þ in the Fourier power spectrum in the exon DNA
sequences. But the peak does not exist in the spectrum for
the intron DNA sequences.

The strength of the 3-base periodicity can be measured
by computing the Fourier power spectrum at the frequency
N=3. However, the computational complexity of Fourier
transforms is expensive when a DNA sequence becomes
large. To measure the strength of the 3-base periodicity of a
DNA sequence, EPND method uses the nucleotide
distributions in the three codon positions (Yin and Yau,
2005). To measure the background noise of the Fourier
spectrum, EPND method uses the length of the DNA
sequence. To associate the signal-to-noise ratio SNðkÞ to
the gene structures, SNðkÞ values from the stepwise DNA
sequences are plotted versus the nucleotide positions k.
Fig. 3(a) is the plot of the averages SNðkÞ of DNA walks of
1000 base pairs fragment of 258 exon sequences from
human genome, and Fig. 3(b) is the plot of the averages
SNðkÞ of DNA walks of 1000 base pairs fragments of 216
intron sequences from human genome. The results in Fig. 3
indicate that for exon regions, with the increase of the
length of the DNA walk sequences, the signal-to-noise
ratios of the DNA walks from most exon sequences are
increased, which show strengthened 3-base periodicity
signals. On the other hand, for the intron regions, due to
the absence of the 3-base periodicity, the signal-to-noise
ratios are randomly fluctuated around some low values
with the increase of DNA walks. It also shows that the
SNðkÞ values for exons are larger than 1, while those for
introns are less than 1. In addition, we also notice that

short exons may have signal-to-noise ratios less than 1 and
short introns may have large signal-to-noise ratios. The
95% confidence intervals of the mean SN values of exons
and introns are plotted in the figure. For instance, the
average SN value and the 95% confidence intervals of the
mean for 500 bp exon sequences are 5.1223 and 4.7960,
5.4486, respectively. The confidence intervals on the mean
of SN of exons and introns have narrow ranges, indicating
that the average SN values obtained from this study have
reasonable accuracy. As for an example, an exon and an
intron from gene 1J942 of C.elegans (the exon sequence is
located from position 114 to position 374, and the intron is
located from position 845 to position 1027) are chosen for
the test. Fig. 4(a) is the plot for the exon and Fig. 4(b) is the
plot for the intron. It indicates that an exon displays an
upward trend in the plot of SNðkÞ ratio versus position,
while an intron displays a flat trend. Thus, for a given
DNA sequence, putative exons and introns can be
identified from the plot of signal-to-noise ratios versus
the nucleotide lengths.

3.2. Identification of exon and intron regions by the EPND
method

To test the feasibility of the EPND algorithm in protein
coding region prediction, the intron fragments and the
exon fragments of test genes from different organisms are
selected. The test data sets used in the performance
evaluation are the full length gene sequences containing
both introns and exons, recovered by joining intron and
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Fig. 2. DFT power spectrum of an exon (a) and an intron (b) from the
gene of AAM70818.2 of Drosophila melanogaster (fruit fly).
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Fig. 3. Plots of the average signal-to-noise ratios of the DNA walks of
1000bp DNA fragments of 258 exons and 216 introns from human
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exon sequences based on the intron positions in the
database files. The exon prediction tests are based on the
demarcated genes in which the introns and exons are not
known. The full length gene sequences are applied to
EPND program to validate the program. As a typical
example, Fig. 5(a) is the plot of SNðkÞ versus the nucleotide
positions k of a test gene with a structure of exon-intron-
exon (the gene locus is at AAB26989.1 of Drosophila
melanogaster (fruit fly)). Fig. 5(b) is the slope plot from SN.
It indicates that most of the slopes of the exon regions
are positive, whereas the slopes of introns are negative.
Fig. 5(c) is the expected gene structures that are verified by
biological experiments. Fig. 5(d) is the predicted gene
structures without applying the improvement algorithm.
The values of Sn, Sp and AC of the test in Fig. 5(d) are
0.8684, 0.4372 and 0.6528, respectively. Fig. 5(e) is the
predicted gene structure after applying the improvement
algorithm. The values of Sn, Sp and AC of the test in Fig.
5(e) are 0.9450, 0.7556 and 0.8503, respectively. The
average accuracy (AC) of exon prediction is improved for
19.75% in this test case. Generally, compared with the
original EPND method, the improvement algorithm may
increase the average prediction accuracy for 1% based on
the test results on 643 human genes. The result shows that
the majority of exon and intron sequences are effectively
identified though short sequences are identified as false
positive or false negative. There are approximate changing
points between exons and introns in the plot, which
indicate that this method can identify the approximate
regions of the exon and intron fragments. However, as
there are also changes in the slope within the intron, it is
difficult to identify the accurate boundaries between
exon and intron regions. This issue is under further
investigation.

3.3. Performance evaluation of the EPND algorithm

The detailed results on gene sets of known structures of
several genomes including H. sapiens (human), Drosophila
(Fruit fly) and Arabidopsis, are shown in Table 1. The table
indicates that accuracy of the EPND program at the
nucleotide level can be 0.8149 when a set of full length
genes from the Drosophila(Fruit fly) genome is tested. The
accuracy of this method is better than or comparable to
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exon and an intron by EPND method. (a) Exon, (b) Intron.

0 200 400 600 800 1000 1200 1400 1600 1800

0

1

2

3

4

5

6

7

Nucleotide Position

S
ig

n
a

l/
N

o
is

e

0 200 400 600 800 1000 1200 1400 1600 1800

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Nucleotide Position

S
lo

p
e

0 200 400 600 800 1000 1200 1400 1600 1800

-1

0

1

2

Nuleotide Position

E
xp

e
ct

e
d

 S
tr

u
ct

u
re

0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1

2

Nuleotide Position

P
re

d
ic

te
d

 S
tr

u
ct

u
re

0 200 400 600 800 1000 1200 1400 1600 1800

-1

0

1

2

Nuleotide Position

P
re

d
ic

te
d

 S
tr

u
ct

u
re

Fig. 5. Gene structure prediction by EPND method. The gene locus is at
AAB26989.1 of Drosophila melanogaster (fruit fly). (a) The signal-to-noise
ratios, SN, of the DNA walks from this sequence calculated by EPND
method. (b) Plot of the slopes of every two points at a distance of 50 base
pair from the SN plot. (c) The expected gene structure that is verified by
biological experiments. Exon regions are marked as 1, and intron regions
are marked as 0. (d) The predicted gene structure by EPND method.
(e) The predicted gene structure by EPND method with overlapping
improvement.
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other gene prediction programs (Burset and Guigo, 1996;
Rogic et al., 2001).

Compared with two currently available algorithms, SC
measure (Tiwari et al., 1997; Yan et al., 1998; Anastassiou,
2000) and rotational SC measure (Kotlar and Lavner,
2003; Jin, 2004) of the DFT, the method presented in this
paper is an improvement of the two algorithms for
applying the measures to exon prediction. The method
described in this paper has the following three features: (1)
the important feature of our method is to use extendable
windows to measure the 3-base periodicity and compute
the slopes of the trends of the signal-to-noise ratios of
DNA walks in 50 base pair window distance, which
reduces the bias when fixed length windows are used. (2)
This method explores the signal-to-noise ratio as an
alternative measure to distinguish exon and intron. Both
signal and noise of the spectral content are not computed
directly from the DFT, where they are computed from the
count of frequencies of four nucleotides in the three coding
positions, which reduces the bias when fixed window
lengths are used. The computation of magnitude of the 3-
base periodicity is based on nucleotide distributions on the
three coding positions. The computation of the nucleotide
distributions on the DNA walk sequences uses a recursive
approach in which computation of nucleotide distributions
on the DNA sequence of length k uses the results of the
nucleotide distributions on the k # 1 length DNA segment.
In terms of computational complexity, the algorithm has a
linear computation time proportional to the length of the
DNA sequence, which is very efficient. (3) This method
only requires small training data set to obtain the signal-to-
noise threshold value, whereas other statistics gene finding
methods require large training sets from which different
statistics parameters are derived. Thus, this method is of
importance to predict genes especially when the informa-
tion on the known genes in a genome is limited.

The algorithm described here, while offering a level of
predictive accuracy that is comparable to other methods,
has limitations that need to be addressed. The algorithm
may not easily identify a short exons as short exons may
yield weak Fourier spectrum signals and the signal-to-noise
ratios have many statistical fluctuations. In addition, if a
short intron is located between a long exon and a short
exon, the signal-to-noise ratio of the intron segment may
still be positive, and the intron may be predicted as an exon
(false positive). The improvement of the limitations is
under further investigation.

4. Conclusion

In this paper, an improved method to predict exon and
intron locations within genes has been proposed based on
the nucleotide distribution in the three codon positions.
The extensible windows approach is employed in the
method to avoid the bias caused by short time Fourier
transform method, improving the performance of the
computation significantly. Case studies indicate that the
method described in this paper is an effective method to
predict protein coding regions in terms of accuracy and
efficiency.
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