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BY GAIL L. ROSEN

he genetic code instructs proteins on the translation of

nucleotides to amino acids, but this example is only one

of many signals encoded in DNA. It is well known that

these protein-coding regions have the lowest mutation
rates in the DNA strand. So, the question arises: how does
DNA protect itself from error? A review of DNA signal
content, redundancy, and mutational mechanisms is presented.
Then, mutation-robust methods are developed to detect a
linear coding structure and approximate tandem repeats.

Ever since the introduction of the Watson-Crick model of DNA,
scientists have been trying to decipher the long sequence of mil-
lions (or, for complex organisms, billions) of bases. The genetic
code, the mapping of nucleotide triplets (codons) to amino acids,
or “protein-coding,” was one of the first discoveries. Signals in
DNA could then be paralleled to digital signals. After 30 years,
many functions and signals in DNA still remain unknown, and sci-
entists have conjectured that nonprotein-coding regions, which
compose 97% of human DNA, are unused junk [1]. On the con-
trary, recent studies reveal that binding sites and initiation signals
exist in these nonprotein-coding areas, and mutation errors in these
regions cause diseases [2]. Nonprotein-coding regions contain a
finite amount of “algorithmic” content [1], [3]. Discovering the
signals and function in these areas is just the beginning of genome
discovery. In this article, we develop a method to uncover an error-
correction coding structure in the nucleotide sequence, and show
that our framework is efficient for detecting approximate tandem
repeats, such as microsatellite regions.

DNA Composition and Repeats

DNA is composed of four bases or nucleotides. A (adenine)
and G (guanine) are considered purines (R), and T (thymine)
and C (cytosine) are considered pyramidines (Y), with purines
being the larger of the two. This size imbalance between
nucleotides creates an affinity between purines and pyra-
midines, and stability is only reached with complementary
pairing: A bonds to T (two weak hydrogen bonds) and C
bonds to G (three weak hydrogen bonds). The weak comple-
mentary bonds make DNA easy to unzip in replication, but
they can also make it susceptible to interfering molecules; thus
for error protection in its stable state, the double strand curls
into a helix. It has been found that certain nucleotide repeats
help DNA to wrap into the curved state. The dinucleotides,
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AA and TT, are placed at certain phases from each other and
cause an average periodicity of 10.55 4= 0.01 base pairs in the
DNA sequence; AG and CT also aide to the helical twist [4].

A fascinating nucleotide series is the telomere, the end of
the chromosome used to buffer genes from the environment.
Due to the way the replication mechanism truncates, the DNA
strand shortens each iteration; human DNA shortens by 50
base pairs (bp) on every cell division [5]. To prevent
nucleotide loss from eventually interrupting a gene, telom-
erase elongates a chromosome’s ends with repetitive
sequences such as TTAGGG, sometimes for thousands of
bases [5]. As we age, telomerase expression weakens, genes
no longer have protection from being cropped, and cells die.
On the contrary, when telomerase is overexpressed, cells tend
to live much longer and divide more frequently, resulting in
cancer [6]. Ninety percent of tumoric growths exhibit exces-
sive amounts of telomerase! Sequence periodicity and repeats
play a vital role in the stability of the overall structure.

Some DNA regions are correlated to specific functions or
signals, and a famous function is that of protein coding, also
known as the coined “genetic code.” These identified patterns
and sites already give seemingly random DNA a clear deter-
ministic structure. Schneider presents a comprehensive list of
DNA signals recognizable by pattern and information content
[7]. In our methods, we begin to examine the underlying redun-
dancy and tandem repeats present in the nucleotide sequence.

Mutations and the Replication Process

Scientists give a rough error rate of 107'° mutations/
nucleotides when DNA is copied. So, what are these muta-
tions and how can we quantify them? Substitution mutations
mostly occur due to 1) accidental bonding of Brownian-
motioned biological elements to DNA or 2) electromagnetic
radiation providing enough energy to break bonds in the
structure. As an example of 1), one of the most common
mutations is the hydrolysis of C to T, known as cytosine
deamination. Water molecules do not have as easy an access
to nucleotides in DNA’s stable helical structure as they do
when DNA is unzipped for replication. In fact, cytosine
deamination is 100 times more likely in replication [8].
Temperature, geometry, and environment are key factors in
studying DNA mutation rates.

JANUARY/FEBRUARY 2006



In addition to errors/mutations caused by clumsy molecules
bumping into DNA, replication itself (or the copying mecha-
nism) can introduce errors that appear structured. For example,
microsatellite regions, an excess of repetitive sequences, result
from replication slippage [9]. Microsatellites in human DNA are
associated with 14 neurodegenerative genetic disorders found in
[2]. Repeats from telomerase slippage causes increased cell divi-
sion and highly correlates with malignant cancer growth.

The replication procedure alone has an error rate of 1073 to
1073 [8], but DNA has an internal “proofreading” mechanism.
When copied, the helical structure unzips and forks into two
separate strands; complementary bases then attach themselves
to complete the new ladders. When a substitution error occurs,
usually a purine replaces a purine (C — T) or a pyramidine
replaces a pyramidine (A — G) in the complementary attach-
ment. This causes a kink to develop due to the mismatch, and
no more bases are added until the correct nucleotide is
restored. This simple proofreading reduces the error rate to
approximately 10~'° [8]. Can understanding these repair path-
ways lead to better error-correcting technologies? Overall, it is
important for the computational biologist to be wary of the
various mutational errors when examining DNA sequences.

Nucleotide Representation

When analyzing DNA, the mathematical representation of
the nucleotides, {A, T, C, G}, is the fundamental first step. It
has even been contemplated why nature chose such an
alphabet in [10]. Many representations have been proposed
and adapted to the type of analysis. For example, purines (A
and G) and the pyrimidines (C and T) can be represented
with a binary representation. In addition, a simple represen-
tation can be chosen for the four bases such as
A=0,G=1,C=2,T =3 (modulo operations), but this
implies a structure on the nucleotides such that T > A and
C > G. For a model of the translation process, Anastassiou
defines a complex representation to the nucleotides:

A=1+jT=1-jiG=—-14+j, and C=—-1—j [11].
The geometric interpretation of this representation still
imposes a structure such that the Euclidean distance between
A and C is greater than the distance between A and T, yet
for the application, nucleotide quantization to amino acids, it
is useful [11]. Various representations, including the one
proposed in this article, can be seen in Table 1.

Symbolic statistical techniques, using Markov models to rep-
resent the various nucleotide states, have been developed to pre-
dict gene sequences [14]. But a representation is needed that
allows deterministic mathematical operations on a finite set of
elements. A field has addition, multiplication, and their inverse
operations (subtraction and division) unlike groups or rings [15].
If one wishes to have these four operations available to analyze a
sequence of symbols, a finite field framework is preferred.

In [13], we propose a mapping of nucleotides to a Galois
field of four, noted as GF(4) [15]. Since GF(4) is an extension
field of GF(2) (any GF(2) binary pair corresponds to one of
four GF(4) symbols) , we can create labels (Table 2) for the
nucleotide elements with GF(2)’s primitive polynomial:

o> +a+1=0. (D

The abstraction of elements to integer labels is an attractive
property of the finite field representation.

The polynomial in (1) can be manipulated in addition,
multiplication, subtraction, and division in GF(4). Refer
to [15] for a detailed derivation. For reference, we show
the resulting addition and multiplication operation tables
in Table 3.

Information Theoretic Studies

Inspired by information theory, Gatlin developed entropy and
divergence measures to quantify complexity in DNA [16].
The entropy, or information capacity of a sequence, is maxi-
mized when all four nucleotides are equiprobable:

Table 1. Table of DNA mathematical representations found in the literature. An example sequence,

GCATI, with its complement and characteristic property given for each representation.

Example Sequence:
G CATT
[ I I Complement
U CAS Representation Sequence GCATT AATGC Property
Simple integer A=0,G=1,C=2,T=3 12033 00312 Uses modulo operations
assignment
Complex assignment A=1+j,G=—-1+], —1+j,-1—]j, T+, 1+j,1—], Reverse and conjuyate
(QPSK) (13) C=-1-jT=1-j T+, 1—j,1—]j —1+j,-1—j fo yet complement
PAM representation A=-15G=-0.5, —-0.5,05,-15, —-15,-15,15, Reverse and neyate to
(13) C=0l,T=06 15,15 -0.5,05 yget complement
Binary indicator Si(n) = 1 where S(N) =i A:00100 A:11000 Four-dimensional
sequence (12) Si(n) = 0 where S(N) # i G: 10000 G:00010 representation
C:01000 C:00001
T.00011 T. 00100
Galois field A=0C=1, 12033 00312 Uses symbolic Galois
assignment (15) 1=2,G=3 field operations
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H=-Y" pilog,(pi)

21 1
=— ; 1 log, (4_1) = 2 bits. 2)

In many species, the bases are not equiprobable, but tempera-
ture dependent. Three bonds exist in C and G bases, while
only two exist in A and T. Thus, it takes more energy to break
the bond between C and G, and it has been found that GC con-
tent is higher in a warmer-environment than colder-environ-
ment organisms. For example, Micrococcus Lysodeikticus,
which inhabits warm spots, has the following base frequen-
cies: Pr(C) = Pr(G) = 0.355 and Pr(A) = Pr(T) = 0.145
[16]. By way of (2), the entropy for this organism is 1.87 b
and this nucleotide imbalance implies redundancy.

A simple entropy measure like (2) indicates nucleotide bias
in a sequence. In recent years, new measures have been devel-
oped such as entropic profiles of various-length genomes [17].
Schneider illustrates DNA nucleotide bias for each nucleotide
position through an easy-to-read sequence logo graph [18].
Techniques for studying information content and bias have
begun to quantify DNA’s implicit structure. In our work, we
show how coding theory and signal processing methods can be
used to investigate this structure.

Coding Models of DNA

Since DNA is a finite, symbolic sequence, it is a natural to
extend the use of coding theory to sequence analysis. Battail
has stated that DNA evolves from a series of repeats heavily
altered by mutation, such as ill-conserved introns, and he pre-
sents a replication decoding framework [19]. His “multiple
unfaithful repetition” model only uses partial knowledge of
the coding constraints in order to decode a message; this prop-
erty makes the model attractive since little is known about the
DNA encoding structure. Inspired by this model, we use par-
tial knowledge methods in our work.

Also, much research has been done by May et al. to study E.
coli translation initiation sequences using block and convolution-
al coding models [20]-[23]. mRNA is viewed as a noisy encod-
ed signal, and the ribosome, which translates the sequence, is
seen as the decoder. Several biological and chemical factors are
used to parameterize the ribosomal decoding model. The block

Table 2. Exponential root representation, polynomial

representation, numerical label, and nucleotide label for
the GF(4) representation.

L=lelseC
d'=as2sT
P=a+13&GC

0=0<0<A

Table 3. Addition and multiplication tables in GF(4).
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code model is effective in recognizing the ribosomal binding
site, and the convolutional model easily distinguishes between
translated and untranslated sequences. May et al. show that cod-
ing models are effective in signal recognition and inspire us to
ask whether there is an inherent coding structure in DNA.

Determination of an Underlying Linear Code
As discussed in the first section, DNA’s repair mechanism
detects and fixes irregularities in the sequence and significantly
reduces the error rate of the replication process. Also, the bonds
between the complementary pairs and the shape of the strands
introduce constraints on the sequence, making the sequence
less random than previously thought. The genetic code intro-
duces the strictest rules in regions where every three
nucleotides produces an amino acid; the 64 nucleotide combi-
nations correspond to 20 amino acids and imply inherent error-
protection. This has led Battail and others [13], [24] to consider
the existence of error protection in the assembly of nucleotides
and that there might be more to DNA repair than just poly-
merase detection of irregularities in the sequence. Is there a
universal block or convolutional code in the sequence where
the proofreading mechanism is the decoder? Already, Mac
Dénaill has hypothesized that a parity check code is present in
the chemical bonds of the four bases [10], providing a founda-
tion for further investigations into sequencing coding structure.
Liebovitch presents the first search for an error-correction
code in DNA using a single parity-bit search method [24].
While his methodical coding-theory-based investigation does
not reveal the presence of a consistent single parity-bit code, the
experiment provides inspiration for future investigations and
context for the complexity of the problem. Thus, there is a need
for a general approach to find k-parity bits placed in any order in
any n-size code to discern an (n, k) block coding structure from
a DNA sequence. We introduce subspace partitioning (SP),
developed from classical coding theory, as a way to search/test
for such codes without prior knowledge of the n or k values,
which are usually known in communication channel error-cor-
rection codes. In biology, we lack these values, thus we develop
a novel, generalized method to look for any (n, k) block-coding
structure. Second, we account for DNA frame shift mutations,
which are also usually not an issue in telecommunications appli-
cations. Third, the symbolic framework of the Galois field
allows the four different bases to be solely symbolic, as they are
in nature. So, while our method is founded in error-correction
code theory, we tailor it to our biological application.

Modeling the Replication Channel

Communication channel models can be paralleled to DNA
processes. In one doctrine, the channel is assumed to be the amino
acid translation from nucleotide triplets [16]. In May
et al., the channel is the actual replication process, and the DNA is
the medium in which genetic information is transmitted from gen-
eration to generation [25]. The latter is good for mutation model-
ing since transcription and copying of DNA is a noisy process.
From the first section, when the activity of the proofreading
mechanism is blocked, replication error rates increase. This leads
us to the hypothesis that there is a sequence coding structure to
protect against replication noise.

In Figure 1, we assume that the DNA is the sequenced
genomic data available in GenBank [26] and that our goal is to
examine the dashed-line-encompassed area and uncover the
encoder scheme; in other words, we wish to infer structure from
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the noisy output to retrieve
the original genetic infor-
mation. Also, if our
assumption is correct and

Genetic

early redundant fashion, Information —#

our analysis will uncover it.

Replication

DNA| Channel _ T

Encoder

DNA is encoded in a lin- i
1

In this system, we know }
nothing about the encoder

or the original information;
therefore, system identifi-

Decoder

cation and deconvolution
methods cannot be used.
We will assume that the
encoder is linear and try to characterize it given such output.

Subspace Partitioning for (N, K) Codes

In our investigation [13], our primary goal is to identify and
characterize any linear constraints that might appear in regions
of a sequence. Lacking the benefit or prior knowledge regarding
the location, duration, or dimensionality of subspace partition-
ing in the sequence, we propose a method that generates a com-
plete orthogonal basis set oriented to a local region of data. The
basis set is used to decompose the sequence (equivalent to a
coordinate transformation). The consistent presence of nulls in
the transformed sequence indicates both the presence and the
dimension of linear subspace partitioning in the data.

The first assumption is a fixed codeword length n. The N*n-
length DNA sequence is grouped into a matrix,
V = [v; v,...vy] where v; is the ith column vector of length
n. The alignment of the frames relative to the starting point
will be referred to as the framing offset. A choice of a particu-
lar framing offset will be referred to as the frameset. Given the
frame length n, there are n unique framesets. See Figure 2 for
an illustration of all frameset groupings.

We apply the Gram-Schmidt algorithm using finite field
operations to the sequence of vectors to yield a complete set of
orthogonal basis vectors, {e;, e, ...e,}. Once an orthogonal
basis is formed from the first j frames of data, the v;’s for i > j
are decomposed into components of each of the basis vectors.
This is simply a coordinate transformation and can be
described by:

€1
€2

t; =Gy where G =

e[l

Provided that the data has been framed correctly when
applying the Gram-Schmidt algorithm, a linear coding redun-
dancy can be detected by noting consistent null coordinates
over a region in the transformed sequence of length-n vectors,
{t;,ts, ..., ty_;}. This null detection would indicate whether a
subspace of the actual n-dimensional space exists.

Subspace Partitioning Algorithm Outline

1) Obtain the orthonormal basis {ej, e, ...e,} by Gram-
Schmidt orthogonalization of j number of v; frames where
j > n. Form the transform matrix G from this set.

2) Decompose the sequence into its basis components,
{t1,ts, ..., ty_;} across all possible framing offsets.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE

Fig. 1. Our noisy channel model of genome replication with underlying coding assumption.

Framing Offset GTAGTCGAATGTCATTGCTGAT ...

~
0 [GTAIGTCI[GAAITGT][CAT][TGC]...
1 [TAGI[TCGJ[AATI[GTCJIATT][GCT]...
2 [AGT][CGAJATG][TCA][TTG][CTGI...

Fig. 2. llustration of vector framiny for n = 3.

3) Note the persistence of nulls in #;’s. Calculate confidence by
comparing against the probability of sequential sets of ran-
domly chosen vectors having the same subspace partitioning.
Given the copious volume of data produced by iterating the

algorithm over numerous frame shifts and codeword lengths, a
visualization method is devised to aid in the search for consis-
tent subspace partitioning. A probabilistically based value
increases to indicate confidence in the presence of subspace
partitioning. We can then plot the confidence as a function of
sequence index 7 across all possible framing offsets.

Results of the Subspace Partitioning Method

The algorithm is capable of detecting and characterizing lin-
ear subspace partitioning in any sequence provided that such
a structure is manifest in the data. For a given sequence, all
such structures can be found provided that the algorithm is
run for every possible framing offset and for every possible
codeword length.

By way of illustration, a test sequence is generated to occupy
a five-dimensional subspace of an eight-dimensional vector
space. This constitutes an (8, 5) linear block code in GF(4).
Running the algorithm on this sequence for n = 8 yields the
confidence image shown in Figure 3(a). Interstitial symbols
are introduced throughout the sequence to illustrate the robust-
ness of the algorithm to framing offsets. When frame shift
mutations occur, the region of subspace consistency simply
migrates to the corresponding row in the diagram.

The linear SP algorithm is then tested using an E. coli K-12
MG1655 sequence (GenBank [26] accession code NC_000913).
The result is shown in Figure 3(b). A consistent linear block code
is not observed to be present throughout the whole sequence, but
some regions are oriented in the same subspace for several consec-
utive frames, denoted by the aggregated intensity of the light bars.

The SP algorithm requires two conditions from the sequence.
Firstly, the algorithm uses nulls in ¢ to indicate subspace parti-
tioning. This requires that the coordinate system G to be properly
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oriented. So, the sequence has to have the same coding present
throughout; otherwise, the vector basis will be misaligned and
may make even a regional coding structure impossible to detect.

The algorithm can be generally applied to any sequence
for which it is suspected that coding properties are present. It
identifies a block code in a symbol sequence independent of
framing, provided that the structure is present from the out-
set. The algorithm could readily be adapted in a classifica-
tion scheme for data of unknown origin or for
cryptographic/cryptanalysis tasks in which the code or
encryption scheme is unknown.

Redundancy and

Tandem Repeat Detection

From structural studies, we know DNA (especially eukary-
otic) has repetitive regions. There are various techniques to
classify these [27]-[29]. Most tandem repeat algorithms use
complex heuristic, combinatorial, or dynamic programming
approaches. In [28], a periodicity transform is used to plot
several periodic/near-periodic regions versus position in a
simple graph. It is one of the most flexible algorithms (by

Frame Offset
~ (o)) (6)] B w N

50 100 150 250

Frame #

200

Frame Offset

200

50 100
Frame #

(b)

150

Fig. 3. (0) Linear subspace partitioning results for a (8, 5)
block-codiny test data. It detects a block code despite
interstitial frame shift mutations. (b) Linear subspace partition-
ing results for a subsection of an n =6 E. coli K-12 MG 1655
sequence. Reyional block codes are detected, but there is
no evidence of a universal code.
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using different detection thresholds) and efficient represen-
tations (periodicities versus nucleotide position), but only
base substitution mutations, not frame shift mutations, are
taken into account.

Now with a nucleotide representation and field-defined
arithmetic operations, we can extend the linear algebraic
techniques used in the SP method to detect periodicities. To
analyze redundancy, we develop a method, the linear
dependence (LD) test, to search for localized regions of lin-
ear dependence in sequence data. The LD test indicates the
mere existence of a subspace, while the subspace partition-
ing method from the previous section tells us the sub-
space’s orientation. Biologically speaking, the SP method
tests for strict block-coding structure, while the LD test
detects a “rough” redundancy, such as an approximate
repeat. If we can determine that a subspace exists and is
present for a portion of the data, we can use this as a start-
ing point for further examination of its orientation (as
explored in [13]). The LD test determines local redundant
regions and is a good starting point for further analysis
such as the detection of tandem repeats.

Linear Dependence Test
In the LD method [30], an Nz—length window of the data is
reshaped as an N x N matrix. This matrix occupies a
maximum of N-dimensions. In the linear dependence test, the
rank of each N x N window is computed to find its dimen-
sional occupancy; the rank computation is based on a recur-
sive Gaussian-elimination algorithm [31] modified for GF(4)
arithmetic. Then the data is incremented by an N-length frame
each iteration, thereby creating a slowly moving N x N win-
dow which moves by N nucleotides each time until the entire
sequence has been traversed. A weight, /, is incremented,
I =1+ 1, on each iteration if rank deficiency is found in con-
secutive window segments.
The outline of the LD technique:
1) For analysis frame length N, collect N consecutive vec-
tors to form N x N window.
2) Perform a rank computation of the N x N matrix.
3) Increment by one frame for each iteration.

20

40

60

Offset

80

100

120

134

500

1,000
Frame #

1,500

Fig. 4. N = 135 LD test for the Yeast Chromosome | sequence,
NC_001133. Intensity increases proportionally to the length
and level of the rank deficiency of consecutive N x N
windows, each starting at a particular frame number. Two
regions associated with the FLO9 yene are shown to be
highly repetitive with the LD Test.
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Frame #

Offset
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Fig. 5. N=19 LD test for a human satellite sequence,
HSVDJSAT. Intensity increases with length and level of the
rank deficiency. At offset 6, an 893-base region exhibits a 19-
base repeat.

4) Note consistent rank-deficiency by incrementing /.

By itself, this method is a measure of regional linear depen-
dence and finds variation in dimensional occupancy between
overlapping windows.

Linear Dependence Test Results

In the first section, we discuss the vital role that nucleotide
repeats play in chromosome buffering and neurodegenerative
disorders. In this section, we show how the LD test is effective
in finding tandem repeats, especially those that are highly
altered by mutational errors.

Using the online Genbank database [26], we select the
Yeast Chromosome I sequence (accession code: NC_001133)
and a human satellite region (accession code: HSVDJSAT) for
our experimental data.

We introduce a way to highlight periodic regions across all
frame offsets to ease visual inspection of periodicities. In
Figures 4-6, the x-axis values correspond to the
frame_numbers (0 to sequence_length/N — N), and
the y-axis denotes our algorithm running for all N frame offsets
needed to test all possible groupings of the data (see Figure 2
for an illustration). If an insertion or deletion occurs and effec-
tively shifts a repetitive portion forward or backward by a few
bases, the highlighted segment will still be shown but in
another frame offset since all frame shifts are examined. If an
N — 1 rank subspace is found, it is denoted in dark gray, and
the lower the rank of the subspace (up to N — 4 for the exam-
ples), the brighter the intensity; also, the higher the linear
dependence persistence indicator /, the brighter the shading
intensity. Therefore, the brightness of the graph is a function of
two factors: the strength and length of the redundant region.

First, the algorithm was run on the Yeast Chromosome I
sequence which can be seen in Figure 4. In Figure 4, two
notable redundant regions of over 17,000 bases are found to
have a periodicity of N = 135. The number of bases producing
a highlighted region can be calculated from the graph by num-
ber_of_frames x N 4 (N x N). Even though the regions
are only rank deficient by one or two dimensions (not a strong
linear dependence), the frames of nucleotides are almost identi-
cal to each other, indicating a 135-base tandem repeat.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE

Fig. 6. N = 24 LD test for HSVDJSAT. At offset 12, a 1,200 base
region exhibits a 24-base repetition. This is longer than the
N = 19 case. Even though this region has high mutation, the
algorithm sfill finds the redundancy.

In [27], it is found that the HSVDJSAT sequence, a repetitive
satellite region of 1,985 bases in the human genome, has a tandem
repeat of 19 bases from 1,195-1,553. The LD test highlights the
tandem repeat across all framesets in Figure 5. While the strong
repeat is from 1,150-1,728, a longer redundant region starting
around base 900 is detected with an offset of 6. Therefore, the LD
test can find the longest periodic region by testing all frame shifts.

Exhaustively running the algorithm over various N, a strong
periodicity of 24 bases is discovered (as seen in Figure 6). At an
offset of 12, there is a periodic region of over 1,100 bases, which
is longer than the periodicity found in the N = 19 runs. Hauth
has recently reported a periodicity of 48 from 1,190-1,553 [32],

CACTCTAGGACAC CCAGCAGGGCA

gtgTtgAGagtgagCALC ctGGCA GGG CTGEAGGCTGE GAGAGGCTE G
GatTgctGgGaGhGygeTgggatay StGacaGAGGCTGGGAtEﬁgtgGG
aRhagGCTGGGAGA GetgGGagags CotgggagaGtTEEGAgaGgctGt

gAt LGCTGGGRAGA GgetGGgagat
GATTGCTGGGRAa] GetgGtagagr
goetgtGatteet gegagagGl
GAGGCTGaGATTGCTGEGAa AGGC
GAGetgGgagagGCTGGE GaC
tAGgccttgagecagGa GEGTGAY
gAGagaTgcgtgggGeaagagGga
tgGaGeTGtaTet GGagcagecac
aGGtGgacTcTLg tagoCAGaget
gacccttgetge cctGtatGecaa
GgatgccagctgeaaactgGgagyg
tGAgGtaccagttAchgeetGgte
ctcacTeagectTgAtgGClCaaGet
agCetTghGgccttcecaaggtaa

JCTGGGAGAGCTGGEAGAGGCTGa
tggt aGAG gt gGGagaget ggGh
TGGEGAGAG GCTGEGAGAGC TGGGA
TGGGAGAGctgGGagaQQCTGGGA
TGEGARaRGACTGGgaRaGaTGGCA
TtecatghagaTaGGetg GggGagt
aggcaGecAGtTcaGggGtaGoecca
gtGggtCAcTTCtacccacagtyg
GTGGacaACCTCTcagaACcagaa
GgtctCoctCCggeCtGg gtCtehg
GeoecaTtgTaCaGaCact aggTggc
ttggTgGecacatagaggtocaGr
ggtegGttaggATttgGagtCLGr
aaccaaaTtGtccTgGettagaat

Fig. 7. Annotation of an N = 48 HSVDJSAT reyion (bases 1,141
— 1,976). The annotation scheme used in Figure 7 is used
here. An approximate repeat can be seen amony insertion
and deletion errors. Uppercase letters denote conserved
portions, underlined letters denote an insertion from the pre-
vious frame, and bold letters denotes a reyion retained
affer/around a deletion occurring from the previous frame.
[talics denote a reygion before a deletion, lowercase letters
denote substitution errors/sequence differences, and light-
gray letters denote portions where multiple base substitutions
occur for a particular base.
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but with most tandem repeat algorithms, the N = 24 periodicity
or multiples is difficult to find. For example, the maximal tan-
dem repetition (mreps) 2.5 algorithm [29] did not yield a 24-base
periodicity (or multiples of 24) for this sequence. This may be
from the lack of exact repeats present. To illustrate, a portion of
the HSVDJSAT region is shown in Figure 7, and no two frames
are equivalent because of mutational errors. For current tandem
repeat algorithms, this is a problem because they are based on
exact frequencies, but our algorithm detects approximate repeats
and, therefore, can easily identify near-periodic regions.

In Figure 7, the lowercase and light gray nucleotides show
regions where the nucleotides may have mutated to other
nucleotides (known as substitution errors) in replication. The
light gray bases are interesting because they represent substitu-
tion of one or more nucleotides, usually dinucleotides, and
also occur quite often in this example.

The LD algorithm does not search for exact repeats or
matching patterns. Instead, the rank-deficiency of the
nucleotide window indicates similar structures, or redundancy,
between the segments. Despite these errors, which throw other
algorithms astray, the LD algorithm easily detected the period-
icity and multiples of 24 as seen in Figure 7.

Conclusions

The subspace partitioning method is based on the hypothesis
that there is an underlying coding structure in DNA used for
error recovery in replication, but our preliminary results do not
indicate a universal block code. In our method, we assume
consistent error correction would occur in both protein-coding
and nonprotein-coding regions. On the contrary, mutation
rates vary from region to region in the genome, and these
areas may need separate treatment. For example, nonprotein-
coding regions are more susceptible to mutation than protein-
coding regions.

In the linear dependence test, we develop an algorithm
which finds near-periodic DNA regions, common to genetic
disorders, in a fast iterative process. In addition, we show that
using a finite-field framework enables the use of linear alge-
bra’s massive toolbox. Two sequences are analyzed via the LD
algorithm, and expected tandem repeats are found in each. An
unexpected approximate repeat of 24 bases is found in the
HSVDISAT sequence. The discovery is due to the algorithm’s
ability to detect redundancy amidst an abundance of mutation
that other algorithms do not tolerate. The linear dependence
test is a simple way to find imperfect periodicities and remains
robust in substitution, deletion, and insertion errors.
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