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ABSTRACT

Previously, we investigated the error-corrective properties
of DNA. Although there is no evidence of a universal coding
structure, we now show finite-field mathematics may yield a
promising deterministic framework to analyze DNA. In this
paper, we discuss a finite-field representation of nucleotides
and explore an application, an algebraic technique for de-
tecting near-periodic structure in DNA. In conclusion, this
technique is a robust iterative process for finding periodici-
ties among mutational errors.

1. INTRODUCTION

Since the introduction of Shannon’s mathematical theory of
communication, scientists have tried to explain DNA within
an information theoretic framework (e.g. [1]). MacDonaill
believes to have uncovered why DNA chose a nucleotide al-
phabet of four [2]. Schneider explores how much pattern
is stored in the DNA for genetic control systems [3]. May
et. al [4] explores how biology might use a block decoding
technique to identify translational signals amidst errors and
mutation in mRNA sequences. We have examined DNA
in this same light but look for an overall encoding scheme
throughout entire DNA sequences in our previous study [5]
as DNA has been found to incorporate a “proofreading”
mechanism in the replication process [6]. So far, there is lit-
tle evidence of a universal error-correction coding structure
in DNA analogous to man-made communications [5], but
May’s work [4] implies that the type of coding scheme used
may vary from region to region and depend on the type of
signal encoded.

Thus, we extend our previous study by using finite-field
mathematics to search for localized redundancies in DNA
and show that this framework is useful for periodic region
detection. “Tandem repeats” is a more formal term of these
periodic regions, and they can contain simple repeats, re-
peats of variable length, or multiple period repeats. These
regions are associated with human disease, play a role in
evolution and are important in DNA fingerprinting. It is dif-
ficult to characterize these regions due to imperfect conser-
vation of patterns caused by mutation.

2. DNA REPRESENTATION

Whenever one attempts to tie mathematical theory to the
genome, the most important assumption is the representa-
tion of the set of nucleotides, {A, T,C,G}. For four bases,
one can choose a simple representation such as A = 0,
C = 1, G = 2, T = 3 and use modulo operations, but
this implies a structure on the nucleotides such that T > A

and C > G. Also, one can use indicator sequences (bi-
nary sequence representing the locations of each element
of nucleotides) producing a four-dimensional representation
yielding an efficient representation for spectral analysis [7].

A deterministic symbolic framework is needed. Sym-
bolic statistical techniques, using markov models to repre-
sent the various nucleotide states, have been developed to
predict gene sequences [8]. Therefore, a representation is
needed which allows deterministic mathematical operations
on a finite set of elements. Finite-field theory offers three
fields for DNA analysis: groups, rings, and fields. For a
short synopsis, a group is a set of elements on which a bi-
nary (usually additive) operation has been defined, a ring
can have multiplicative and additive operations but an in-
verse may not exist (i.e.: subtraction is possible but not divi-
sion), and a field has both operations and their inverses [9].
(This is not a complete set of conditions for the fields). If
one wishes to have a wide range of operations available for
linear algebraic analysis of a set of elements, a finite field is
the preferred framework.

DNA is a symbolic set and in no way can be characterized
as a group, ring, or field. Afterall, the commutivity and as-
sociativity of DNA is unknown. As a result, we look solely
upon the fact that if linear algebra were available as a tool,
ease of analysis awaits. Therefore, using this logic only, we
choose to analyze DNA as a finite field and will inspect the
results to assess the validity of this framework.

In this paper, we will map nucleotides to a Galois field
[9] of four, GF (4). Since GF (4) is an extension field of
GF (2) (any GF (2) binary pair corresponds to one of four
GF (4) symbols) , we can create labels (Table 1) for the
nucleotide elements with GF (2)’s primitive polynomial:

α2 + α + 1 = 0 (1)



0 = 0 ⇔ 0 ⇔ A

α0 = 1 ⇔ 1 ⇔ C

α1 = α ⇔ 2 ⇔ T

α2 = α + 1 ⇔ 3 ⇔ G

Table 1: Exponential root representation, polynomial representa-
tion, numerical label, and nucleotide label.

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Table 2: Addition and multiplication tables in GF (4).

This abstraction of elements to integer labels makes finite
field theory an attractive framework.

Although each element is meant to be symbolic in nature,
the true meaning of these assignments give rise to the ques-
tions: What is it meant for A to be the 0 element and to be
its own multiplicative inverse? Is this finite field abstraction
truly symbolic?

Refer to [9] for a detailed derivation of the GF (4) opera-
tions using the polynomial in equation 1. For reference, we
show the resulting operation tables in Table 2.

Another question arises when using these operations in
a linear space. What does it mean for a vector to be self-
orthogonal? In GF(4), the inner-product of [2 1 0 3] with it-
self is 0. Abstraction of pure mathematics to a physical sys-
tem introduces anomalies and its implications are not obvi-
ous. We will use this framework to analyze redundancy in
DNA and draw conclusions about the advantages and dis-
advantages of a finite-field framework.

3. LINEAR DEPENDENCE TEST

Now with a nucleotide representation and defined arithmetic
operations, we can use linear algebraic techniques on DNA
sequences. To analyze redundancy, we developed a method,
the linear dependence test, to search for localized regions of
linear dependence in sequence data. The linear dependence
(LD) test indicates the mere existence of a subspace while
the subspace partitioning method from our previous paper
[5] tells us the subspace’s orientation. If we can determine
that a subspace exists and is present for a greater portion
of the data, we can use this as a starting point for further
examination of its orientation (as explored in [5]).

In the LD method, an N2-length window of the data is
reshaped as an N × N matrix as shown in Figure 1. This
matrix occupies a maximum of N -dimensions. In the linear
dependence test, the rank of each N × N window is com-
puted to find its dimensional occupancy; the rank computa-
tion is based on a recursive Gaussian-elimination [10] mod-
ified for GF (4) arithmetic. Then the data is incrememented

Figure 1: Illustration of how an N × N window is shaped
from the DNA data.

by an N -length frame each time, thereby creating a slowly
moving N × N window which moves by N nucleotides
each iteration until the entire sequence has been traversed.
A weight, I , is increased linearly, I = I + 1, on each it-
eration if rank-deficiency is found in consecutive windows
segments.

The outline of the LD technique:
• For analysis frame length, N , collect N consecutive vec-
tors to form N × N window.
• Perform a rank computation of the N × N matrix.
• Increment by one frame for each iteration.
• Note consistent rank-deficiency by linearly increasing I .

By itself, this method is a measure of linear dependence
in regions of the data but not necessarily globally as needed
for a block coding scheme. For global linear coding to be
present, the basis vectors would have to form a consistent
subspace over all frames in a sequence. Thus, this algorithm
is more localized and detects approximate repeats and even
time-varying approximate repeats.

4. RESULTS

4.1. Sequence Data Source

Using the online GenBank database, the entire Yeast se-
quence (accession number: NC 001133) and a human satel-
lite region (accession number: HSVDJSAT) was selected.

4.2. Sequence Analysis
First, we decided to run the algorithm on whole sequences
such as Yeast which can be seen in Figure 2.

In these graphs, the x-axis corresponds to the frame num-
ber in which the N × N window begins, and the y-axis
denotes our algorithm running for all N − 1 frame offsets
needed to test all possible groupings (see Figure 3 for il-
lustration) of the data, accounting for insertion and deletion
mutations [6]. This means that if an insertion or deletion oc-
curs and effectively shifts the redundant portion forward or



Figure 2: N = 135 for NC 001133. The rank computation is
computed for each N × N window starting at the frame number
plus offset.

Figure 3: Illustration of vector framing for N = 3. Three of these
vectors would form the initial N × N window.

backward, this information is preserved because all shifts of
the data are examined. If an N − 1 rank subspace is found,
it is denoted in white, and subsequently an N − 2 rank is
denoted in blue, an N − 3 rank in magenta, and an N − 4
rank in yellow. The intensity of this color is determined by
I , the persistence of the linear dependence, as mentioned in
the LD method’s final step.

In Figure 2, two notable redundant regions of over 17000
bases are found to have rank-deficiency when N = 135.
Even though data is only deficient by one or two dimen-
sions, visually inspecting a portion of the data in Figure 4
shows the frames are almost identical to each other, indicat-
ing that a tandem repeat is present.

In [11], it was found that the HSVDJSAT sequence,
a repetitive satellite region of 1985 bases in the human
genome, has a tandem repeat of 19 bases. Using the LD test,
one can easily see the tandem repeat in Figure 5. While the
strong repeat is from 1150 − 1500, a longer redundant re-
gion starting at around base 900 is detected by using an off-
set of 6.

Exhaustively running the algorithm for many N, it was
also found that a strong periodicity of 24 bases exists as seen
in Figure 6. At an offset of 12, there is a periodic region of
over 1100 bases, which is longer than the periodicity found

Figure 5: N = 19 for HSVDJSAT.

Figure 6: N = 24 for HSVDJSAT.

in the N = 19 runs. Hauth [11] does not report this period-
icity, and with existing tandem repeat algorithms, it may be
hard to find. The mreps 2.5 algorithm [12] did not yield any
periodicity of 24 for this sequence. This may be due to the
fact that no exact repetition exists. In Figure 7, a portion of
the HSVDJSAT region is shown, and no two frames are the
same because of mutational errors. For current tandem re-
peat algorithms, this is a problem because they are based on
exact frequencies, but our algorithm detects redundancies
and therefore can easily identify near-periodic regions.

The LD test easily found the N = 24 redundancy, and
a listing of the nucleotides in the strong tandem repeat re-
gion can be seen in Figure 7. An interesting note is that the
LD algorithm does not search for exact repeats or matching
patterns. This can be seen when the algorithm finds sim-
ilar structures rather than exact repeats. In Figure 7, the
red blocks show regions where the nucleotides may have
mutated to other nucleotides (known as substitution errors)
when the DNA was copied and appended. The blue squares
indicate regions where the a deletion error may have oc-
curred. The orange circles in this figure shows where the



Figure 4: A near tandem repeat sequence of 1890 nucleotides in the Yeast NC 001133 sequence (exact nucleotide indices are located at
the top).

Figure 7: N = 24 listing of 1141 − 1672 for HSVDJSAT.

suspected error occurred; in both deletion cases, a G was
deleted. Despite these errors which throws other algorithms
astray, the LD algorithm easily detected the periodicity.

5. DISCUSSION: THE GALOIS FIELD AND DNA

There are some clear disadvantages to using GF (4) in
conjunction with linear algebra. The clearest is the self-
orthogonal vector property. For this to occur, the number of
nucleotides in the frame must be an even number; if we look
at Table 2, a number added to itself is 0, and this can oc-
cur for an inner-product of an even-element symmetric nu-
cleotide vector, ATAT or [0 2 0 2]. Before more complex
linear algebraic operations can be used, this anomaly must
be dealt with.

The proposed analysis in this paper yields a quick way to
visually inspect periodicity in DNA regions. We now ad-
dress the validity of the finite-field framework. From Fig-
ure 7, it can be seen that the algorithm is robust amidst var-
ious errors. This is due to the fact that the finite field struc-
ture preserves the symbolic nature of the nucleotides. Sim-
ilar structures are linear combinations of each other (e.g.
GAGA = GTGT + ATAT ). If a pure repeat exists, the
dimensional occupancy of a analysis window is 1. With
added insertions and deletions, the window rank increases
but not enough for all basis vectors to be linearly indepen-
dent of each other, thus still detecting a strong redundancy
among errors. Although some analysis cannot be performed

because of the self-orthogonal property induced by GF (4),
the Galois field allows complex operations on a finite sym-
bolic set and enables powerful tools for DNA analysis.

6. CONCLUSIONS
In this paper, we develop an algorithm which finds near pe-
riodic DNA regions, common to many genetic disorders, in
a fast iterative process. Also, it is shown that using a finite-
field framework enables the use of linear algebra’s mas-
sive toolbox. Two sequences are analyzed via the LD algo-
rithm, and expected tandem repeats are found in each. A
previously undiscovered repeat of 24 bases is found in the
HSVDJSAT sequence. This discovery is due to the abun-
dance of mutation errors in this sequence which other algo-
rithms do not tolerate. In conclusion, the linear dependence
test is a simple way to find imperfect periodicities and re-
mains robust in substitution, deletion, and insertion errors.
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