Two Port Reconfigurable Metamaterial Leaky Wave Antenna

Daniele Piazza\(^\d\), Michele D'Amico\(^\d\), Kapil R. Dandekar\(^\d\)

\(^\d\)Department of Electrical and Computer Engineering, Drexel University, U.S.
\(^\d\)Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

Overview

Highly reconfigurable two element array with beam steering capabilities in a compact design and with good impedance matching for all its configurations.

Three major benefits are achieved in using this reconfigurable antenna in MIMO communications:

- increased data rate compared to common non-reconfigurable antennas;
- reduced power consumption with respect to standard non-reconfigurable arrays;
- reduced space occupation by the antenna on the communication device.

Tunable CRLH unit cell

- Composite Right Left Hand (CRLH) reconfigurable unit cell antenna design
- Composite Right Left Hand (CRLH) unit cell with two independent biasing points to dynamically change the unit cell propagation constant for a fixed frequency of operation.
- The unit cell Bloch impedance is kept close to $50\,\Omega$ for good impedance matching, by tuning the two independent DC bias points.

![Composite Right Left Hand (CRLH) reconfigurable unit cell antenna design](image)

Reconfigurable leaky wave array

- 25 cascaded unit cell form a two port pattern reconfigurable leaky wave antenna.
- Electronic beam scanning is a function of the applied bias voltage ("S" and "SH")
 \[\theta = \sin \left(\frac{\beta(\text{S}, \text{SH})}{k_0} \right) \]
- Radiation patterns excited at the two ports are symmetric with respect to the broadside direction.
- High isolation between the two ports (>10 dB).

2x2 channel measurements

- Semi-anechoic chamber with metallic foils for increased multipath.
- RLWA employed at the RX.
- 20 MHz band centered at 2.45 GHz.
- 5 locations and 10 points per location spaced $\lambda/10$ on the y axis.

RLWA performance

- Average capacity improvement of 14% with respect to the array of dipoles.
- 18% average capacity improvement with respect to the RLWA most capacity achieving configuration.

Power saving using the RLWA with respect to dipoles for a target throughput of 300 Mbps.

Measured return loss of the two ports of the RLWA for 5 different configurations.

Unit cell dispersion diagram for 5 different configurations of applied voltages.

Measured radiation patterns (in dB) for 5 different configurations at the two ports of the RLWA. Frequency = 2.45 GHz.