Symmetry in Network Coding

Jayant Apte, John MacLaren Walsh
Drexel University, Dept. of ECE, Philadelphia, PA 19104, USA
jsa46@drexel.edu, jwalsh@coe.drexel.edu

Abstract—We establish connections between graph theoretic symmetry, symmetries of network codes, and symmetries of rate regions for k-unicast network coding and multi-source network coding. We identify a group we call the network symmetry group as the common thread between these notions of symmetry and characterize it as a subgroup of the automorphism group of a directed cyclic graph appropriately constructed from the underlying network’s directed acyclic graph. Such a characterization allows one to obtain the network symmetry group using algorithms for computing automorphism groups of graphs. We discuss connections to generalizations of Chen and Yeung’s partition symmetrical entropy functions and how knowledge of the network symmetry group can be utilized to reduce the complexity of computing the LP outer bounds on network coding capacity as well as the complexity of polyhedral projection for computing rate regions.

Index Terms—network coding, symmetry, graph automorphism

I. INTRODUCTION

Many important pragmatic problems, including the efficient transfer of information over networks, the design of efficient distributed information storage systems, and the design of streaming media systems, have been shown to involve determining the capacity region of an abstracted network under multi-source multi-sink network coding (MSNC). Yan et al. [1] provided an implicit characterization of the rate region of MSNC over directed acyclic graphs in terms of the entropy function region \(\Gamma_n^* \), however, the problems of characterizing \(\Gamma_n^* \) and its closure \(\Gamma_n^{\ast\ast} \) remain open to date. Nonetheless, [1] provides a method, in principle, for at least bounding the MSNC capacity region of a network by substituting in known polyhedral inner and outer bounds for \(\Gamma_n^* \) [2]–[5]. When the resulting inner and outer bounds match, the capacity region has been determined.

The notion of network symmetry can be helpful for determining these bounds and capacity regions in at least two ways. First of all, certain inner and outer bounds can be shown to match, yielding exact calculation of the rate region, when the network has certain symmetries. In this vein, Chen and Yeung [6] have shown that certain symmetrical parts of \(\Gamma_N^* \) fixed under the action of symmetric groups defined by certain types of partitions are equivalent to the same symmetrical parts of the Shannon outer bound \(\Gamma_N \). A second important way that network symmetry can be helpful in determining rate regions for networks under MSNC is via the reduction of complexity of computing their polyhedral bounds.

Bearing this in mind, the first goal of this work is to formalize the notion of structural symmetry in MSNC problems. A natural way to obtain such a formalization is via groups, and with each instance of multi-source network coding we will associate a subgroup of \(S_n \) (group of all permutations of \(n \) symbols) called the network symmetry group (NSG) that contains information about the symmetries of that instance. §II is devoted to the preliminaries and the definition of NSG. The connections between NSGs and symmetries of network codes and rate regions are discussed in §III. Secondly, we provide means to compute this group given an instance of a multi-source network coding problem. This is achieved through a graph theoretic characterization of the NSG, specifically, as a subgroup of automorphism group of a directed cyclic graph called the dual circulation graph that we construct from the directed acyclic graph underlying the MSNC instance. The k-unicast network coding problem (k-UNC), which is a special case of MSNC problem, has a simpler characterization of NSGs, which is covered in §IV, followed by the more general characterization of NSG for MSNC in §V. We then provide pointers to algorithms for computing automorphism groups of graphs that can be readily used for computing NSGs. Finally, in §VII we discuss connection to Chen and Yeung’s partition symmetrical entropy functions [6] and use of NSGs in polyhedral projection to compute polyhedral bounds on rate regions and other applications.

II. NETWORK SYMMETRY GROUP

We begin by defining the problems of interest for this work.

Definition 1. An instance of multisource network coding problem (MSNC) is described by the tuple \((G, S, T, \beta)\) where \(G = (V, E) \) is a directed acyclic graph, \(S, T \subseteq V \) are the sets of source and sink nodes respectively, \(S \cap T = \emptyset \), and \(\beta : T \rightarrow 2^S \setminus \emptyset \) is a map giving the demands for each of the sink nodes.

The directed acyclic graphs considered in this work are assumed to be simple (i.e. there exists at most one directed edge between any \(u,v \in V \)).

Definition 2. An instance of MSNC problem is an instance of k-unicast problem if \(|\beta(t)| = 1, \forall t \in T, |S| = |T| = k \) and \(\beta \) is a bijection between \(T \) and \(S \).

With each source node \(s \in S \) and edge \(e \in E \) we associate discrete random variables \(X_s \) and \(X_e \) respectively. Altogether, between the edge and source random variables, we have a set of \(n = |E| + |S| \) random variables, collected into the set \(X_n \). For each edge \(e = (u,v) \in E \), define \(\text{head}(e) = v \) and \(\text{tail}(e) = u \). For each node \(v \in V \) we define sets \(\text{In}(v), \text{Out}(v) \subseteq X_n \). For \(v \in V \setminus S \), \(\text{In}(v) \) is the collection of random variables associated with edges \(e \in E \).
and L to an extended formulation of the rate region. This allows us to consider source entropies and edge rates to be variables, which leads to a type of constraints that is the rate constraints on information rates between nodes. Let the set of all rate constraints be denoted as S. The network coding constraints for MSNC problem [1] can be specified in terms of directed graphs. Subgroups are denoted using ' \triangleright'.

First, we consider the action of a finite group on X_n, how does one compute the NSG G for a MSNC instance \mathcal{I} that stabilizes L_{123} setwise under its induced action on L.

We define the network symmetry group (NSG) as follows.

Definition 4. The network symmetry group G^2 of a MSNC instance $\mathcal{I} = (G = (V,E), \mathcal{S}, \mathcal{T}, \beta)$ is the subgroup of $G_n = |S| + |E|$, that stabilizes L_{123} setwise under its induced action on L.

When defined this way, G^2 also stabilizes sets $\Lambda_1, \Lambda_2, \Lambda_3$ setwise. Furthermore, since Λ_1 is stabilized setwise, subsets Λ_1, Λ_2 and Λ_3 of constraints in Λ_2 are also stabilized setwise. A natural question now arises: given an instance \mathcal{I} of MSNC problem, how does one compute the NSG G^2? We answer this question in sections IV and V, using a graph theoretic characterization of G^2 involving two more concepts below.

Definition 5. An automorphism σ of a directed graph $G = (V,E)$ is a bijection $\sigma : V \rightarrow V$ s.t. if $(u,v) \in E$ then $(\sigma(u), \sigma(v)) \in E$.

Definition 6. ([7], pg. 265) The line graph of a directed graph $G = (V,E)$ is the directed graph $G^* = (E,P)$ where $P \triangleq \{(e_1,e_2) | e_1 = (u,v), e_2 = (z,w) \in E \text{ and } v = z\}$.

III. Symmetries of Codes and Rate Regions

In this section we consider action of NSG G^2 of a MSNC instance \mathcal{I} on network codes for \mathcal{I} and rate region [1] associated with \mathcal{I}.

Definition 7. A network code $\langle\{f_e\}, \{g_t\}\rangle$ for a MSNC instance \mathcal{I} is an assignment of a function f_e to each edge $e \in E$ and a function g_t to each sink $t \in T$.

When we say that a network code $\langle\{f_e\}, \{g_t\}\rangle$ satisfies L_{123}, we mean that source random variables and edge random variables created by $\{f_e\}$ and $\{g_t\}$ satisfy constraints in L_{123}.
As mentioned in previous section, G^T stabilizes the subset of L_2 associated with $t \in T$ setwise. With slight abuse of notation, we shall refer to this permutation as $\pi : T \rightarrow T$. G^T acts on a network code via the map $\delta : (g, \{f_i\}, \{g_j\}) \mapsto (\{f_{\pi(T)}\}, \{g_{\pi(t)}\})$. The definition of the NSG then implies the following theorem, which links the NSG to symmetries of network codes.

Theorem 1. Let G^T be the NSG associated with MSNC instance I. Then, for any $g \in G^T$. If network code $\{\{f_i\}, \{g_j\}\}$ satisfies L_{123}, so does $\{\{f_{\pi(T)}\}, \{g_{\pi(t)}\}\}$ for every $g \in G^T$.

A pair ω, r of source information rates and edge rates vectors is achievable if there exists a network code satisfying L_{123} corresponding to it. The next theorem relates NSGs to symmetries of the rate region.

Theorem 2. If ω, r is an achievable source information rates and edge rates vector pair for a MSNC instance I, so are $\{\omega_s | s \in S\}, \{R_e | e \in E\}$ for every $g \in G^T$.

Proof: Let $\{\{f_i\}, \{g_j\}\}$ be the network code that achieves ω, r. From theorem 1 network code $\{\{f_{\pi(T)}\}, \{g_{\pi(t)}\}\}$ achieves $\{\omega_s | s \in S\}, \{R_e | e \in E\}$, for each $g \in G^T$.

IV. SYMMETRIES IN k-UNICAST NETWORK CODING

We consider the problem of computing G^T corresponding to an instance I of k-UNC problem.

Definition 8. The circulation graph of an instance (G, S, T, β) of k-UNC problem is a directed graph $G_e = (V_c, E_c)$ such that $V_c = V$ and $E_c = E \cup \{(t, \beta(t)) | t \in T\}$

We call the set $F_c \triangleq \{(t, \beta(t)) | t \in T\} \subseteq E_c$ the feedback edge set. The line graph of circulation graph G_e will henceforth be called the dual circulation graph and denoted as G^*_e. For example, the circulation graph and dual circulation graph corresponding to the butterfly network (Fig. 1) are shown in Fig. 1 and Fig 2 respectively. The construction of the dual circulation of graph is reminiscent of the construction of a guessing game associated with a k-UNC instance (eg. in fig. 2 by deleting vertices associated with X_4, X_7, X_8, X_2, X_5 and X_6 and replacing them with pairs of directed edges $X_1 \leftrightarrow X_3, X_2 \leftrightarrow X_1, X_3 \leftrightarrow X_2$), where the main objective is to determine solvability of a network coding instance (see eg. [8], [9] for related definitions and constructions). For the purpose of this work, it suffices to use a construction that captures the symmetries of network codes and rate regions with order of the graph so constructed being reasonable in terms of, e.g., the number of variables in the original k-UNC instance.

With each edge $e \in E_c \setminus F_c$ we associate corresponding edge random variable X_e and with each edge $f = (t, \beta(t)) \in F_c$ of the circulation graph, we associate a source random variable $X_{\beta(t)}$. In this setup, any automorphism of the dual circulation graph induces a permutation on X_n. We will denote the group of automorphisms of G^*_e as $\text{Aut}(G^*_e)$ and treat it as a group of permutations of X_n. Let $G_{e}^* \leq S_n$ be the group of permutations of X_n that stabilize the subset of random variables associated in F_c (the source random variables) setwise. The following theorem states that the NSG of a k-UNC instance is $G_{F_c} \cap \text{Out}(G^*_e)$. The proof relies on the fact that the edges in the dual circulation graph correspond to directed paths of in length 2 in the circulation graph.

Theorem 3. The network symmetry group of a k-UNC instance is $G^T = G_{F_c} \cap \text{Out}(G^*_e)$, the group of permutations of X_n induced by the subgroup of automorphism group of its dual circulation graph that setwise stabilizes the feedback edge set.

Proof: If a permutation $\sigma \in G^T$ is not in G_{F_c} then the source independence constraint does not remain fixed. Hence, $G^T \leq G_{F_c}$. Now we prove that $G^T \leq \text{Out}(G^*_e)$ i.e. if $\sigma \in G^T$, then $\sigma \in \text{Out}(G^*_e)$. Since a permutation $\sigma \in G^T$ fixes L_{123}, for every constraint $C \in L_{123}, G^*_C$ is also a constraint in L_{123}. It follows that for $e_1, e_2 \in G_c$, if (e_1, e_2) forms a directed path in G_c, then $(\sigma(e_1), \sigma(e_2))$ also forms a directed path in G_c, implying that $\sigma \in \text{Out}(G^*_e)$. Hence $G^T \leq G_{F_c} \cap \text{Out}(G^*_e)$.

Conversely, consider a permutation $\sigma \in G_{F_c} \cap \text{Out}(G^*_e)$. L_1 is fixed under σ since $\sigma \in G_{F_c}, L_5$ is fixed by definition of automorphism. As for L_2, if (e_1, e_2) form a directed path in G_c, then $(\sigma(e_1), \sigma(e_2))$ also forms a directed path in G_c. Hence, to preserve length 2 directed paths $\ln(i) \times \text{Out}(i)$ through a node $i \in V$, $\sigma(\ln(i)) = \ln(j)$ and $\sigma(\text{Out}(i)) = \text{Out}(j)$ for some $j \in V$, i.e. a permutation is induced on V. Hence, L_{123} remains setwise fixed implying $G_{F_c} \cap \text{Out}(G^*_e) \leq G^T$.

For example, the NSG G^T for Fig. 1 is a subgroup of S_9 of order 2, with the only non-trivial automorphism being $(1,2)(3)(4,5)(6,7)(8,9)$ which is understood as a permutation of subscripts $i \in [n]$ of $X_i \in X_n$ in cycle decomposition notation.
V. SYMMETRIES IN MSNC

The characterization of NSGs for MSNC instances follows
same rough procedure as that of k-UNC instances. However,
it is complicated by the fact that there exist sources that
are demanded by more than one sink nodes. To create the
circulation graph \(G_c \) from \(G \) we add some new vertices and
to edges to \(G \). Specifically, we add a set of vertices \(S' = \{ s' | s \in S \} \), sets of edges \(F_c = \{ (t, j') | j \in \beta(t), t \in T \} \) and
\(E_S = \{ (s', s) | s' \in S' \text{ and } s \in S \} \)

\[
\begin{align*}
V = & \{X_1, X_2, X_3, X_4\}, \\
E = & \{ (X_1, X_2), (X_1, X_3), (X_1, X_4), (X_2, X_3), (X_2, X_4), (X_3, X_4) \}, \\
F = & \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}, \\
E_S = & \{ (X_1, X_2), (X_1, X_3), (X_1, X_4), (X_2, X_3), (X_2, X_4), (X_3, X_4) \}, \\
E_c = & \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}.
\end{align*}
\]

![Figure 3: M-network: an instance of MSNC problem](image)

Definition 9. The circulation graph of a MSNC instance is a
directed graph \(G_c = (V \cup S', E \cup E_S \cup F_c) \).

In order to characterize NSG \(G^T \) of a MSNC instance \(I \), we
associate a random variable in \(X_n \) with each eage in \(E \cup E_S \)
of the circulation graph. We do not associate any random
variables with edges in \(F_c \). Similar to k-UNC instances, the
dual circulation graph of a MSNC instance is obtained as the
line graph of the circulation graph and is denoted as \(G^*_c \).
In this setup, we cannot directly treat \(\text{Aut}(G^*_c) \) as a
group that permutes \(X_n \). Instead, we restrict our attention to
automorphisms \(\sigma \in \text{Aut}(G^*_c) \) that stabilize \(E_S \) setwise.

Lemma 1. If \(G \leq \text{Aut}(G^*_c) \) stabilizes \(E_S \) setwise then it also
stabilizes \(F_c \) and \(E \) setwise.

Proof: Let \(\sigma(u, v) = (w, z) \) for \((u, v), (w, z) \in E_S \), \(\sigma \in G \)
and let \((d, v) \in F_c \). Then, \(\sigma(d, u) = (d', u) \in F_c \) for some
sink node \(d' \in T \), in order to preserve directed path \((d, u, v) \).
As an implication, \(E \) is also setwise stabilized.

From lemma 1, \(E \cup E_S \) is setwise fixed by such \(G \). Thus,
any member of automorphism group of the dual circulation
graph that setwise stabilizes \(E_S \) induces a permutation on \(X_n \).
The set of all such induced permutations forms a group. We
de note this group as \(G_{E_S} \) which can now be treated as a group
of permutations of \(X_n \). Alternatively, \(G^T \) can be treated as a
(group of permutations of \(E \cup E_S \).

Lemma 2. Every \(\sigma \in G^T \) induces a permutation on \(V \cup S' \),
that stabilizes \(S' \) and \(T \) setwise.

Proof: A \(\sigma \in G^T \) stabilizes set of source random variables
setwise. Hence, if a constraint \(C \) is associated with \(t \in T \)
then, \(C^\sigma \) must also be associated with some \(t' \in T \) (although
\(t = t' \) is possible). Secondly, since \(S' = \{ \text{tail}(e) | e \in E_S \} \),
i.e. it contains nodes that are tails of edges associated with
source random variables, a permutation is induced on \(S' \). As
for \(V \setminus (S' \cup T) \), the permutation can be constructed from
the permutation of \(L_2 \) brought about by \(\sigma \).

We now show that NSG \(G^T \) is same as \(G_{E_S} \).

Theorem 4. The network symmetry group of a MSNC instance
is the group of permutations induced onto \(E \cup E_S \) by the
subgroup of \(\text{Aut}(G^*_c) \) that stabilizes \(E_S \) setwise.

Proof: Since we associated random variables with each edge
in \(E \cup E_S \), a permutation of \(X_n \) induces a permutation of
\(E \cup E_S \). If a permutation induced on \(E \cup E_S \) by \(\sigma \in G^T \)
does not stabilize \(E_S \) setwise, then source independence constraint
does not remain fixed under such a permutation, contradicting
the fact that \(\sigma \in G^T \). We now show that every permutation
of \(E \cup E \) induced by \(\sigma \in G^T \), is also induced by some \(\sigma' \in
\text{Aut}(G^*_c) \) that stabilizes \(E_S \) setwise, by explicitly constructing
one such \(\sigma' \in \text{Aut}(G^*_c) \). From lemma 2 we know that \(\sigma \in G^T \)
induces a permutation of \(S' \) in addition to permutation of the
set \(T \subset V \) of sink nodes. We will refer to it as \(\sigma(s') \) and \(\sigma(d) \)
for \(s' \in S' \) and \(d \in T \) respectively.

\[
\sigma'(u, v) = \begin{cases}
\sigma(u, v) & \text{if } (u, v) \in E_S \cup E \\
\sigma(u, v) & \text{if } (u, v) \in F_c
\end{cases}
\]

(6)

Since \(\sigma \) preserves \(L_2 \), for \(e_1, e_2 \in E \cup F \), if \((e_1, e_2) \) forms
a directed path in \(G_c \), then \((\sigma'(e_1), \sigma'(e_2)) \) also forms
a directed path in \(G_c \). The remaining directed paths of type
\((d, s', s) \), \(d \in T, s' \in S', s \in S \) are preserved by construction of
\(\sigma' \). Hence, \(\sigma' \in \text{Aut}(G^*_c) \). Conversely, we must show that
\(L_{123} \) is stabilized setwise under action of \(G_{E_S} \). By definition,
\(G_{E_S} \) fixes the source independence constraint and stabilizes
\(L_1 \). As for \(L_2 \), if \(\sigma \in G_{E_S} \) and \((e_1, e_2) \) form a directed path
in \(G_c \), for \(e_1, e_2 \in E \cup E_S \), then \((\sigma(e_1), \sigma(e_2)) \) also forms
a directed path in \(G_c \). Hence, to preserve length 2 directed paths
\(\ln(i) \times \text{Out}(i) \) through a node \(i \in V \), \(\sigma(\ln(i)) = \ln(j) \) and
\(\sigma(\text{Out}(i)) = \text{Out}(j) \) for some \(j \in V \), i.e. a permutation is
induced on \(V \). Thus, \(L_2 \) is stabilized setwise. By Lemma 1,
\(L_3 \) is also stabilized setwise. Hence \(\sigma \in G^T \).

For example, for the M-network in Fig. 3, the subgroup of
the automorphism group of the dual circulation graph of
the circulation graph in Fig. 4 that stabilizes \(E_S \), is a subgroup of
\(S_{3^2} \) of order 8 with 3 generators. To help visualize: the cycle
decomposition of the permutations of the set of (subscripts
of) source random variables induced by the generators are:
\((1,3)(2,4), (3,4), \) and \((1,2) \).

VI. COMPUTING AUT\((G^*_n)\)

Several software tools can be utilized to follow the method presented in this paper for computing the network symmetry group based on stabilizer subgroups of automorphism groups of graphs. One of the first softwares successful in practice for computing automorphism groups of (di)graphs is McKay’s nauty [10] (No AUTomorphisms, Yes?). The underlying algorithm essentially performs canonical labeling of the given (di)graph and as a byproduct, automorphism group is computed. McKay’s algorithm is based on partition refinement and traversal of a search tree, where each node of the tree corresponds to an ordered partition of the vertices of the graph while leaves correspond to discrete partitions (where each block is a singleton) of vertices. This structure readily allows us to start with pre-defined partition of vertices of the graph and traversal of a search tree, where each node of the tree is a subset of the given polyhedron, specifically those points in \(\Omega \) that setwise stabilizes each block in the partition \(p \) of \(X_n \) which corresponds to the orbits of \(G^*_n \) on \(X_n \). Chen and Yeung [6] considered the action of \(\Sigma_p \) on \(H_n \) and defined the partition symmetrical entropy function region \((\Psi^*_p) \) and polymatroidal region \((\Psi_p) \) which are those points in the respective regions that are fixed under the action of \(\Sigma_p \). Similar regions \((\Psi^*_p) \) and \(\Psi_p \) resp. can be defined corresponding to \(G^*_n \leq \Sigma_p \) as can \(\Psi^*_p \) and \(\Psi_p \) from \(\Gamma^*_n \) for \(k \in \{\text{In}, \text{Out}\} \). When it comes to network coding applications, usually \(G^*_n \leq \Sigma_p \), which means that there are group elements in \(\Sigma_p \) which do not leave the constraints \(L_{123} \) fixed. This occurs, for instance, in both networks in Fig. 1 and Fig. 3. In these instances, even though the groups \(G^*_n \) and \(\Sigma_p \) induce the same partition of \(X_n \) and hence are associated with the same fixed subspace \(\text{Fix}_{G^*_n}(\mathbb{R}^{\{X_n\}_p}) = \text{Fix}_{\Sigma_p}(\mathbb{R}^{\{X_n\}_p}) \) in the rate region coordinates (i.e. after projection), on the power sets, and hence in entropy coordinates (before projection), \(\text{Fix}_{G^*_n}(\mathbb{R}^{2^{X_n}\setminus\{\emptyset\}}) \neq \text{Fix}_{\Sigma_p}(\mathbb{R}^{2^{X_n}\setminus\{\emptyset\}}) \). As such, while it is certain that \(R_k \cap \text{Fix}_{\Sigma_p}(\mathbb{R}^{\{X_n\}_p}) = \text{proj}_\omega \Psi_p \cap L_{123} \), in general it will be possible that \(R_k \cap \text{Fix}_{\Sigma_p}(\mathbb{R}^{\{X_n\}_p}) \supset \text{proj}_\omega \Psi_p \cap L_{123} \). This is the reason why it is the NSG \(G^*_n \) and its fixed subspace of the entropy region \(\Psi^*_p \) is the appropriate notion of entropy region symmetry when it comes to network codes, for \(k \in \{\text{In}, \text{Out}\} \).

For instance, for the butterfly network in Fig. 1, the dimension of \(\Psi_p \) is \(3^4 \times 2 = 160 \) (see [6]) while the dimension of \(\Psi_{\text{Out}} \) is \(\frac{1}{2}(511 + 31) = 271 \). By observing in Burnside’s lemma that the only non-empty subsets of \(X_n \) fixed under \((1,2)(3)(4,5)(6,7)(8,9) \) are the ones that can be obtained as union of some collection of blocks in the partition \(p \).

Finally, NSGs are useful in algorithms for isomorph free exhaustive generation [17] of network codes, enhancing e.g. [4], as they can be exploited to list only those codes that are different up to these additional known symmetries.

ACKNOWLEDGMENTS

NSF support under CCF-1016588 and CCF-1421828 is gratefully acknowledged.

REFERENCES

APPENDIX A

ADDITIONAL EXAMPLES

The three generators of subgroup of $\text{Aut}(G_3^*)$ that setwise stabilizes E_2 for M-network, written as permutations of edges of circulation graph associated with M-network are:

$$g_1 = ((10, 1'), (10, 3'))((11, 1'), (12, 3'))((11, 4'), (12, 2'))$$
$$((13, 2'), (13, 4'))((1', 1), (3', 3))((2', 2), (4', 4))$$
$$((1, 5), (3, 6), (2, 5), (4, 6))((5, 7), (6, 9))((5, 8), (6, 8))$$
$$((7, 10), (9, 10))((7, 11), (9, 12))((7, 12), (9, 11))$$
$$((7, 13), (9, 13))((8, 11), (8, 12))$$

$$g_2 = ((10, 1'), (11, 1'))((10, 3'), (11, 4'))((12, 2'), (13, 2'))$$
$$((12, 3'), (13, 3'))((3, 3'), (4, 4))((3, 6), (4, 6))$$
$$((7, 10), (7, 11))((7, 12), (7, 13))((8, 10), (8, 11))$$
$$((8, 12), (8, 13))((9, 10), (9, 11))((9, 12), (9, 13))$$

$$g_3 = ((10, 1'), (12, 2'))((10, 3'), (12, 3'))((11, 1'), (13, 2'))$$
$$((11, 4'), (13, 4'))((1', 1), (2, 2))((1, 5), (2, 5))$$
$$((7, 10), (7, 12))((7, 11), (7, 13))((8, 10), (8, 12))$$
$$((8, 11), (8, 13))((9, 10), (9, 12))((9, 11), (9, 13))$$

$$g_1 = ((12, 3), (14, 1))((1, 4), (3, 5))((1, 8), (3, 9))$$
$$((11, 12), (3, 14))((2, 4), (2, 5))((4, 6), (5, 7))$$
$$((6, 8), (7, 9))((6, 9), (7, 8))((6, 12), (7, 14))$$
$$((8, 10), (9, 11))((10, 12), (11, 14))((10, 13), (11, 13))$$

$$g_2 = ((12, 3), (14, 1))((1, 4), (3, 5))((1, 8), (3, 9))$$
$$((11, 12), (3, 14))((2, 4), (2, 5))((4, 6), (5, 7))$$
$$((6, 8), (7, 9))((6, 9), (7, 8))((6, 12), (7, 14))$$
$$((8, 10), (9, 11))((10, 12), (11, 14))((10, 13), (11, 13))$$

APPENDIX B

SPECIAL CASES: I-DSC

The symmetry results in this section pertain to a superclass of MDCS [5], [18] that is obtained when we relax the priorities on sources and restrictions on the access structure. We call these instances relaxed MDCS or I-DSC.

Definition 10. An I-DSC instance is described by the tuple $(k, \mathcal{E}, \mathcal{D}, R, \beta)$ where k is the number of source random variables, \mathcal{E}, \mathcal{D} are sets indexing the encoders and decoders,
relation $\mathcal{R} \subseteq \mathcal{E} \times \mathcal{D}$ gives the access structure and $\beta(d) \subseteq [k], d \in \mathcal{D}$ giving decoder demands.

We assume the sets $[k], \mathcal{E}$ and \mathcal{D} to be disjoint. Now we define the circulation graph for I-DSC. Let $V \triangleq [k] \cup \{s\} \cup \mathcal{E} \cup \mathcal{D}$. Let $E_S \triangleq \{(i, s) \mid i \in [k]\}$ be the source edge set, $E_\mathcal{E} \triangleq \{(s, e) \mid e \in \mathcal{E}\}$ be the encoder edge set, $E_R \triangleq \{(e, d) \mid (e, d) \in \mathcal{R}\}$ be the access edge set and $E_F \triangleq \{(d, i) \mid i \in \beta(d), d \in \mathcal{D}\}$ be the feedback edge set. Let $E \triangleq E_S \cup E_\mathcal{E} \cup E_R \cup E_F$. The circulation graph for an I-DSC instance is then $G_c \triangleq (V, E)$. We associate a random variable X_i with edge $(i, s), i \in [k]$ and a random variable U_e with edge $(s, e), e \in \mathcal{E}$. Let $X_u \triangleq \{X_i \mid i \in [k]\} \cup \{U_e \mid e \in \mathcal{E}\}$. The network constraints in I-DSC are defined in the same manner as the MDCS instances. We classify them into sets \mathcal{L}_1, which contains the source independence constraint, \mathcal{L}_2, which contains the encoding constraints and the decoding constraints and \mathcal{L}_3, which contains the rate constraints. Note that each encoding constraint is associated with an encoder and each decoding constraint is associated with a decoder. The dual circulation graph G^*_c of an I-DSC instance is the line graph of its circulation graph. In this setup, an automorphism of the dual circulation of graph induces a permutation on X_u. Denote the subgroup of $\text{AUT}(G^*_c)$ that stabilizes E_S setwise as G_{E_S}. Note that G_{E_S} stabilizes $E_\mathcal{E}, E_R$ and E_F setwise. Hence $\sigma(E_S \cup E_\mathcal{E}) = E_S \cup E_\mathcal{E}$. This, along with the fact that members of G_{E_S} must preserve length 2 directed paths, imply following lemma.

Lemma 3. Every $\sigma \in G_{E_S}$ induces a permutation on V that stabilizes $\mathcal{E}, \mathcal{D} \subseteq V$ setwise.

Theorem 5 gives characterization of network symmetry groups.

Theorem 5. The network symmetry group G^2 of an I-DSC instance \mathcal{I} is the group of permutations of X_u induced by the subgroup of $\text{AUT}(G^*_c)$ that stabilizes the source edge set E_S setwise.

Proof: Let σ' be a permutation induced on X_u by a $\sigma \in G_{E_S}$. Set of source random variables is stabilized setwise since E_S is stabilized setwise, fixing the source independence constraint. The set of encoding constraints is stabilized setwise since $E_\mathcal{E}$ is stabilized setwise, i.e. an encoding constraint for $U_{e_1}, e_1 \in \mathcal{E}$ maps to encoding constraint for $U_{e_2}, e_2 \in \mathcal{E}$, since σ stabilizes $E_\mathcal{E}$ and E_S setwise. A decoding constraint associated with a decoder $d \in \mathcal{D}$ can be written in general form $h_{X \cup Y} = h_X$ where $X \subseteq \mathcal{S}$ and $Y \subseteq \mathcal{E}$ where X is the set of encoders accessed by d and Y is the set of sources demanded by d. Let $X^{\sigma'} = \sigma'(X)$ and $Y^{\sigma'} = \sigma'(Y)$. From lemma 3, $X^{\sigma'}$ is the set of encoders accessed by some decoder $d' \in \mathcal{D}$ while $Y^{\sigma'}$ is the set of sources demanded by d'. Hence \mathcal{L}_2 is stabilized setwise by σ'. \mathcal{L}_3 is also stabilized setwise by σ' since $E_S \cup E_\mathcal{E}$ is stabilized setwise by σ.

Conversely, consider a $\sigma \in G^2$. It induces a permutation on $E_S \cup E_\mathcal{E}$ via the association of random variables with edges we described, which we also refer to as σ. Since σ stabilizes \mathcal{L}_1 setwise, $\sigma(E_S) = E_S$ and $\sigma(E_\mathcal{E}) = E_\mathcal{E}$. Furthermore, a permutation on $V_{\mathcal{S}}, V_{\mathcal{E}}$ and $V_{\mathcal{D}}$ is induced via the permutation of sources and the permutation of encoding and decoding constraints respectively that is brought about by σ, which we refer to as σ as well. We explicitly construct an automorphism σ' of G^*_c that stabilizes E_S setwise and induces σ as follows:

$$\sigma'(u, v) = \begin{cases}
\sigma(u, v) & \text{if } (u, v) \in E_S \cup E_\mathcal{E} \\
(\sigma(u), \sigma(v)) & \text{if } (u, v) \in E_R \\
(\sigma(u), \sigma(v)) & \text{if } (u, v) \in E_{\mathcal{D}}.
\end{cases}$$ (9)

First note that $\sigma'(u, v) = (\sigma(u), \sigma(v)) \in E_R$ for $(u, v) \in E_R$, since σ stabilizes the set of encoding constraints setwise i.e. decoder $\sigma(v)$ has access to encoder $\sigma(u)$. Similarly, $\sigma'(u, v) \in E_{\mathcal{D}}$ for $(u, v) \in E_{\mathcal{D}}$. Hence, σ' is indeed a permutation of the set of edges E of G_c. If $\sigma'(d) = d'$ for some $d, d' \in \mathcal{D}$, the length 2 directed paths of type $(s, e, d), e \in \mathcal{E}$ is preserved as $\sigma'(e) = e'$ s.t. $e' \in \beta(d')$ in order to preserve decoding constraint associated with d. Similarly, directed paths of type $(e, d, i), e \in \mathcal{E}, d \in \mathcal{D}, i \in [k]$ are preserved due to preservation of \mathcal{L}_3 by σ'. Finally, directed paths of type $(i, s, e), i \in [k], e \in \mathcal{E}$ are preserved by construction.

Appendix C

Special cases: regenerating I-DSC

In this section we consider a generalization I-DSC which is a superclass containing several problems in literature concern-
The network symmetry group G^E of a regenerating I-DSC instance \mathcal{I} is described by the tuple $(k, \mathcal{E}, \mathcal{D}, \mathcal{D}', R, R', \beta, \gamma)$ where k is the number of source random variables, \mathcal{E}, \mathcal{D} and \mathcal{D}' are sets indexing the encoders, decoders and repair decoders, relations $R \subseteq \mathcal{E} \times \mathcal{D}$ and $R' \subseteq \mathcal{E} \times \mathcal{D}'$ give the access and repair access structures respectively and $\beta : \mathcal{D} \rightarrow 2^{[k]} \setminus \emptyset$ and $\gamma : \mathcal{D}' \rightarrow \mathcal{E} \setminus \emptyset$ giving decoder and repair decoder demands.

Let \mathcal{R} and \mathcal{R}' be available through two functions $f : \mathcal{D} \rightarrow 2^\mathcal{E} \setminus \emptyset$ and $f' : \mathcal{D}' \rightarrow 2^\mathcal{E}$. Note that if $\gamma(d') = e \in \mathcal{E}$ then $e \notin f'(d')$ for all $d' \in \mathcal{D}'$. We now define the circulation graph for regenerating I-DSC instance \mathcal{I}. Let $V \triangleq [k] \cup \{s\} \cup \mathcal{E} \cup \mathcal{E}' \cup \mathcal{D} \cup \mathcal{D}'$ where $|E| \triangleq \{e' : e \in \mathcal{E}\}$. Let $E_S \triangleq \{(i, s) : i \in [k]\}$ be the source edge set, $E_{E'} \triangleq \{(s, e'), e' \in \mathcal{E}'\}$ and $E_E \triangleq \{(e', e) : e, e' \in \mathcal{E}\}$ be the two encoder edge sets, $E_R \triangleq \{(e, d) : (e, d) \in \mathcal{R}\}$ be the access edge set, $E_{R'} \triangleq \{(e, d') : (e, d') \in \mathcal{R}'\}$ be the repair access edge set, $E_F \triangleq \{(d, i) : i \in \beta(d), d \in \mathcal{D}\}$ be the feedback edge set and finally, $E_{F'} \triangleq \{(d', i) : i \in \gamma(d'), d' \in \mathcal{D}'\}$. Let $E \triangleq E_S \cup E_E \cup E_{E'} \cup E_R \cup E_{R'} \cup E_F \cup E_{F'}$. The circulation graph for a regenerating I-DSC instance \mathcal{I} is then $G_\mathcal{I} \triangleq (V, E)$. In a regenerating I-DSC instance, there are k RVs corresponding to the sources, $|\mathcal{E}'|$ RVs corresponding to the encoded messages and $|\mathcal{R}'|$ random variables corresponding to repair encodings giving a total of $n = k + |\mathcal{E}| + |\mathcal{R}|$. The constraints associated with regenerating I-DSC are very similar to those of I-DSC. The set L_1 contains the source independence constraint. The set $L_2 = \bigcup_{i,j \in [k]} L_{2}^i$, where L_2^1 and L_2^2 contain the encoding and decoding constraints respectively, while sets L_2^3 and L_2^4 contain the repair encoding and repair decoding constraints. Moreover, $|L_2^1| = |\mathcal{E}|$, $|L_2^2| = |D|$, $|L_2^3| = |\mathcal{R}|$ and $|L_2^4| = |D'|$. Finally, the set L_3 contains a rate constraint per random variable. In order to obtain an automorphism group characterization of symmetries, we associate random variables with edges of $G_\mathcal{I}$.

With each edge $(e, d') \in \mathcal{R}'$, we associate a random variable $U_{e,d'}$, with each edge $(i, s') \in E_S$, we associate a random variable X_i, and with each edge $(s, e') \in E_E$, we associate a random variable U_s. Let \mathcal{X}_n be set of all random variables associated with the instance. Denote by G_{E_S} the network symmetry group G^E for a regenerating I-DSC instance \mathcal{I} is characterized as follows. $\sigma \in G_{E_S}$ also stabilizes sets $E_{X}, \mathcal{X} \subseteq \{\mathcal{E}, \mathcal{R}', \mathcal{E}', \mathcal{F}, \mathcal{R}, \mathcal{F}'\}$ setwise. In this setting, every automorphism of G^E induces a permutation on \mathcal{X}_n.

Lemma 4. Every $\sigma \in G_{E_S}$ induces a permutation on V that stabilizes $\mathcal{E}, \mathcal{E}', \mathcal{D}, \mathcal{D}' \subseteq V$ setwise.

Theorem 6. The network symmetry group G^E of a regenerating I-DSC instance \mathcal{I} is the group of permutations of \mathcal{X}_n induced by the subgroup of $\text{AUT}(G^E)$ that stabilizes source edge set E_S.

Proof: Let σ' be the permutation induced on \mathcal{X}_n by $\sigma' \in G_{E_S}$. Set of source random variables is stabilized setwise by σ', since E_S is stabilized setwise, fixing the source independence constraint. The set L_3^1 of encoding constraints is stabilized setwise since sets E_S and E_E are stabilized setwise, i.e. an encoding constraint for some $U_{e_1, e_2} \in E$ maps to encoding constraint for some $U_{e_2, e_2} \in E$. Set L_3^2 of decoding constraints is preserved by σ' since from lemma 4, σ obeys a permutation on decoders D and if $\sigma(d_1) = d_2$ for $d_1, d_2 \in D$, then $\sigma'(\text{In}(d_1)) = \text{In}(d_2)$ and $\sigma'(\text{Out}(d_1)) = \text{Out}(d_2)$. Set L_3^2 of repair encoding constraints contains one constraint per RV $U_{x,y} : (x, y) \in \mathcal{R}'$ and is stabilized setwise by σ' since σ preserves length 2 directed paths of type (s, e_1', e_1) and (e_2', e_2, d') where $e_1' \in \mathcal{E}'$, $e_1 \in \mathcal{E}$ and $d' \in \mathcal{D}'$. Set L^4_3 of repair decoding constraints contains one constraint per encoder.
in $\gamma(D') \subseteq E$. Note that permutation on E induced by σ according to lemma 4 also stabilizes $\gamma(D')$ setwise implying that σ' stabilizes L_3^2 setwise. Finally, L_3 is stabilized setwise as E_S, E_F, and $E_{R'}$ are stabilized setwise by σ'.

Conversely, let $\sigma \in G^Z$. Such a σ induces a permutation on E_S, E_F and $E_{R'}$ based on aforementioned association of random variables with edges E_S, E_F and E_S. It also induces a permutation on E and E' based on permutation of L_3^2 on D,D' based on permutation of L_2^2 and L_2^2 respectively and on $[k]$ based on permutation of source random variables. We refer to these permutations as σ as well. We now construct a $\sigma' \in \text{AUT}(G^Z)$ s.t. σ is induced by σ'.

$$
\sigma'(u,v) = \begin{cases}
\sigma(u,v) & \text{if } (u,v) \in E_S \cup E_F \cup E_{R'}, \\
(\sigma(u),\sigma(v)) & \text{if } (u,v) \in E_S \cup E_R \cup E_F \cup E_{R'},
\end{cases}
$$

Note that for $(u,u') \in E_C$, $\sigma'(u,u') = (\sigma(u),\sigma(u')) \in E_R$. For $(u,v) \in E_R (E_F, E_{F'})$, $\sigma'(u,v) = (\sigma(u),\sigma(v))$ and since σ stabilizes L_3^2, L_2^2 setwise, $(\sigma(e),\sigma(d)) \in \mathcal{E}$ i.e. $(\sigma(e),\sigma(d)) \in E_R (E_F, E_{F'})$ as well. Hence, σ' is indeed a permutation of E. Let $e_1,e_2 \in E, e_1',e_2' \in E', d_1,d_2, d_1',d_2' \in D'$ and $i_1,i_2 \in [k]$. The directed paths of type (s,e_1,e_1) are preserved by construction.

Directed paths of type (e',e,d) are preserved since $\sigma'(d_1') = d_2$ then $\sigma'(e_1',1) \in E_{F'}$ by construction of σ'. Similarly, directed paths of types $(e_1,d_1,1)$ and (d_1,i_1,s) are preserved under σ' as σ preserves L_2^2 whereas directed paths of types (e_1',e_1,d_1') and (e_1,d_1,e_1') are preserved under σ' as σ preserves repair encoding constraint set L_3^2 respectively. Directed paths of type (d_1,e_1',e_1) are preserved by construction.

APPENDIX D

GENERALIZED p-SYMMETRICAL ENTROPY FUNCTIONS

In this section we consider several generalizations of p-symmetrical entropy functions of Chen and Yeung [6] in increasing order of generality. Chen and Yeung considered action of special subgroups of S_n which we refer to as p-stabilizer groups on H_n. Roughly speaking, a p-stabilizer group setwise stabilizes each block of partition p. A precise definition can be stated as follows:

Definition 12. Given a partition p of X_n with blocks X_{n_1},\ldots, X_{n_p} the p-stabilizer group Σ_p is defined as the subgroup of S_n that contains permutations σ such that if $X_i \in X_j$ then, $\sigma(X_i) \in X_j$, for all $i \in [n]$, $j \in [p]$.

In fact, Chen and Yeung [6] mention the generalization to action of arbitrary subgroups of S_n on H_n as a future direction. The following example shows that a network symmetry group need not be a p-stabilizer group corresponding to its orbits p in the set of variables. Hence, such a generalization is in fact warranted.

The orbits of symmetry group G^Z of butterfly network considered in section IV form a partition of X_n, namely $\{\{X_1, X_2\}, \{X_3\}, \{X_4, X_5\}, \{X_6, X_7\}, \{X_8, X_9\}\}$. Let’s denote this partition as p. Let Σ_p be the associated p-stabilizer group. This group has order 16. Hence, one can see that automorphism groups of network coding instances are more general than p-stabilizer groups. We can associate with each G^Z a p-stabilizer group Σ_p. Both G^Z and Σ_p act on H_n by permuting $2^{X_n} \setminus \emptyset$. With slight abuse of notation, henceforth, we will refer to $2^{X_n} \setminus \emptyset$ as simply 2^{X_n}. The sequence of induced actions of G^Z can be written as:

$$
\text{Act}_{G^Z}(H_n) \xrightarrow{\text{induced action}} \text{Act}_{G^Z}(2^{X_n}) \xrightarrow{\text{induced action}} \text{Act}_{G^Z}(H_n)
$$

and similarly for Σ_p:

$$
\text{Act}_{\Sigma_p}(H_n) \xrightarrow{\text{induced action}} \text{Act}_{\Sigma_p}(2^{X_n}) \xrightarrow{\text{induced action}} \text{Act}_{\Sigma_p}(H_n)
$$

Let the sets of orbits under their action on 2^{X_n} be denoted as P^Z and P which also also partitions of 2^{X_n}. Number of blocks in P is denoted as $n(p)$ (as defined in [6]) while number of blocks in P^Z is denoted as N_p. One can see that $N_p \geq n(p)$ since P^Z is essentially a refinement of P. We denote different blocks of P and P^Z as P_i, $i \in [n(p)]$ and P^Z_i, $i \in [N_p]$ respectively. Following Chen and Yeung [6] the set of points in H_n fixed under action of Σ_p is defined as follows.

$$
\text{Fix}_{\Sigma_p}(H_n) = \left\{ \mathbf{h} \in H_n \mid \text{h}(A) = \text{h}(B) \text{ if } A, B \in P_i \right\}
$$

Similarly we define set of points in H_n fixed under action of G^Z as follows,

$$
\text{Fix}_{G^Z}(H_n) = \left\{ \mathbf{h} \in H_n \mid \text{h}(A) = \text{h}(B) \text{ if } A, B \in P^Z_i \right\}
$$

Fix$_{\Sigma_p}(H_n)$ and Fix$_{G^Z}(H_n)$ are subspaces of H_n of dimension n_p and N_p respectively. For automorphism group of butterfly network, we can compute N_p using Burnside Lemma. Let a group G act on set S. Denote by S^g the set of elements in S that are fixed under the action of a specific $g \in G$.

Lemma 5. (Burnside) No. of orbits $= \frac{1}{|G|} \sum_{g \in G} |S^g|

Considering action of G^Z on 2^{X_n} we get,

$$
N_p = \frac{1}{2}(511 + 31) = 271
$$

where number of elements in 2^{X_n} fixed under identity permutation is $|2^{X_n}| = 511$, while $2^5 - 1 = 31$ is the number of element of 2^{X_n} fixed under action of G^Z (to see this, note that the only non-empty subsets of X_n fixed under $(1,2)(3)(4,5)(6,7)(8,9)$ are the ones that can be obtained as union of some collection of blocks in the partition p). On the other hand, the formula given by Chen and Yeung yields

$$
N_p = 3^4 \times 2 = 162
$$

Following lemma establishes containment relationship between subspaces of points in H_n, fixed under network symmetry group G^Z and corresponding p-stabilizer group Σ_p.
Lemma 6. \(\text{Fix}_{G_{\Sigma}}(\mathcal{H}_n) \subseteq \text{Fix}_{G_{\Sigma}}(\mathcal{H}_n) \)

Naturally, corresponding to a network coding instance \(\mathcal{I} \), we can define a \(\mathcal{I} \)-symmetrical entropy function region as:

\[
\Psi_{\mathcal{I}} \triangleq \text{Fix}_{G_{\Sigma}}(\mathcal{H}_n) \cap \Gamma_n
\]

and a \(\mathcal{I} \)-symmetrical polymatroidal region as:

\[
\Psi_{\mathcal{I}} \triangleq \text{Fix}_{G_{\Sigma}}(\mathcal{H}_n) \cap \Gamma_n
\]

Using lemma 6 we conclude the following:

Theorem 7. For any network coding instance \(\mathcal{I} \) with symmetry group \(G^2 \) and associated p-stabilizer group \(\Sigma_p \),

1) \(\Psi_p^* \subseteq \Psi_{\mathcal{I}}^* \)

2) \(\Psi_p \subseteq \Psi_{\mathcal{I}} \)

A further generalization of \(p \)-symmetrical entropy functions can be obtained by considering action of a subgroup of \(GL(\mathbb{R}, 2^n - 1) \) on \(\mathcal{H}_n \) which is essentially a group of automorphisms of \(\mathcal{H}_n \) (i.e. bijective linear transformations \(\sigma : \mathcal{H}_n \to \mathcal{H}_n \)). We call symmetries captured by such a group the geometric symmetries. Simplest geometric symmetries one can consider are the groups \(G \leq O(\mathbb{R}, 2^n - 1) \leq GL(\mathbb{R}, 2^n - 1) \) where \(O(\mathbb{R}, 2^n - 1) \) is the group of orthogonal linear transformations of \(\mathcal{H}_n \). Elements of \(G \) are \(2^n - 1 \times 2^n - 1 \) permutation matrices. Such a group \(G \) acts naturally on \(\mathcal{H}_n \) by permuting \(2^{\mathcal{X}_n} \) (equivalently, the set of standard basis vectors of \(\mathcal{H}_n \)). Let \(\mathcal{P} \) be the set of orbits in \(2^{\mathcal{X}_n} \) under action of \(G \leq O(\mathbb{R}, 2^n - 1) \) and let \(N = |\mathcal{P}| \). Similar to equations 13, 14 we can define the set of points in \(\mathcal{H}_n \) fixed under the action of \(G \) as:

\[
\text{Fix}_G(\mathcal{H}_n) = \left\{ h \in \mathcal{H}_n \mid h(A) = h(B) \text{ if } A, B \in \mathcal{P}_i \text{ for some } i \in [N] \right\}
\]

We can now define the \(G \)-symmetrical entropy function region as:

\[
\Psi_G \triangleq \text{Fix}_G(\mathcal{H}_n) \cap \Gamma_n
\]

and the \(G \)-symmetrical polymatroidal region as:

\[
\Psi_G \triangleq \text{Fix}_G(\mathcal{H}_n) \cap \Gamma_n
\]

\(G^2 \) corresponding to a network coding instance \(\mathcal{I} \) and \(\Sigma_p \) can be realized as subgroups of \(O(\mathbb{R}, 2^n - 1) \) with the generators being permutation matrices corresponding to permutations of \(2^{\mathcal{X}_n} \) they induce.

The last notion of symmetry we consider is specific to polyhedral bounds on \(\Gamma_n \) such as LP outer bound (\(\Gamma_n \)), \(\mathcal{F}_q \)-representable matroid inner bound (\(\Gamma_n^q \)) and subspace inner bounds (\(\Gamma_n^{C, \text{space}} \)). These are called the combinatorial symmetries. Our exposition of combinatorial symmetries follows Rehn [19]. First we define isomorphism of the face lattice.

Definition 13. \(f \) is a face lattice isomorphism between two face lattices \(L(P) \) and \(L(Q) \) if \(f \) is a bijection of the faces of \(P \) to the faces of \(Q \) such that for all faces \(F, G \) of \(P \), it holds that

\[
F \subseteq G \iff f(G) \subseteq f(F)
\]

A face lattice automorphism of polyhedron \(P \) is a face lattice isomorphism between \(L(P) \) and itself.

Definition 14. A combinatorial symmetry of a polyhedron \(P \) is an automorphism \(f \) of its face lattice \(L(P) \)

Set of all combinatorial symmetries forms a group called combinatorial symmetry group. Given the inequalities \((H\)-representation) and extreme rays \((V\)-representation) describing a polyhedron \(P \), one can compute its combinatorial symmetry group from incidence relationships between facets and extreme rays [20]. In case of polyhedral bounds on \(\Gamma_n \), we are usually presented with either inequalities or the extreme rays describing polyhedral bound, eg. Shannon outer bound has a redily available inequality description in form of elemental inequalities, see [21], while matroid and subspace inner bounds are readily available in extreme ray description from enumeration of connected matroids [21]. The alternative descriptions of both of these bounds \((V\)-representation for \(\Gamma_n \) and \(H\)-representation for \(\Gamma_n^q \)) tend to be prohibitively large. e.g. \(\Gamma_5 \) has 117,983 extreme rays and and only 85 inequalities. Hence one would like to compute at least a subgroup of combinatorial automorphism groups of \(\Gamma_n \) and \(\Gamma_n^q \), while avoiding representation conversion. This purpose is served by the restricted symmetries(see [15], [19]). We first define restricted isomorphism. The following terminology is defined for polyhedral cones described in terms of its extreme rays \((V\)-representation). Note that these definitions can be extended to polyhedral cones described in terms of inequalities \((H\)-representation) by considering the associated polar polyhedral cone [22] and to arbitrary polyhedra using homogenization [23]. Denote a polyhedral cone generated by a set of vectors \(V = \{v_1, \ldots, v_n\}, v_i \in \mathbb{R}^d, \forall i \in [n] \) as \(P(V) \).

Definition 15. A Restricted Isomorphism of between two polyhedral cones \(P(V) \) and \(P(V') \), with \(V = \{v_1, \ldots, v_n\} \) and \(V' = \{v'_1, \ldots, v'_n\} \) in \(\mathbb{R}^d \) is given by a matrix \(A \in GL_q(\mathbb{R}) \) such that there exists a permutation \(\sigma \) satisfying

\[
Av_i = v'_{\sigma(i)} \text{ for } i \in [n]
\]

A restricted automorphism of a polyhedral cone \(P(V) \) is a restricted isomorphism between \(P(V) \) and itself.

Definition 16. A restricted symmetry of a polyhedral cone \(P \) is a restricted automorphism of \(P \)

All restricted symmetries of a polyhedral cone \(P \) form a group with matrix multiplication as operation, called restricted symmetry group. Restricted symmetries can be computed by obtaining automorphism group of an appropriately constructed edge-colored graph [15] using software such as SymPol [24]. Using SymPol, we computed restricted symmetry group of \(\Gamma_4 \). It is a group of order 1152 with 8 generators.

Placeholder: Symmetries of \(\Gamma_n^2 \)

Placeholder: Inclusion relationships between notions of symmetry
APPENDIX E
EXPLOITING SYMMETRY IN LINEAR PROGRAMMING

This section briefly discusses symmetries of linear programs and related terminology, as defined by [13], [14] and how to use them to reduce the complexity of solving the linear program. We consider linear programs in following standard form

\[
\max \ c^t x \\
\text{s.t.} \ A x \leq b, \ x \in \mathbb{R}^d
\]

where \(A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^d \setminus \{0\} \) \(x \in \mathbb{R}^d \) is feasible if it satisfies all constraints of the LP. LP is feasible if it has at least one feasible point. Set of feasible solutions of an LP is \(X \triangleq \{x \in \mathbb{R}^d \mid Ax \leq b\} \), which is a polyhedron. A solution of an LP is an element \(x^* \in \mathbb{R}^d \) that is feasible and maximizes the cost function. We will restrict our attention to subgroups of \(O(d, \mathbb{R}) \) whose elements are permutation matrices. A permutation matrix is a matrix whose rows are a permutation of rows of the identity matrix. Denote the group of all \(d \times d \) permutation matrices by \(\text{Perm}(d) \). A subgroup of \(\text{Perm}(d) \) acts naturally on \(\mathbb{R}^d \) via matrix vector multiplication. e.g.

\[
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
=
\begin{pmatrix}
3 \\
1 \\
2
\end{pmatrix}
\]

shows action of a member of \(\text{Perm}(3) \) on an element of \(\mathbb{R}^3 \). Roughly speaking, symmetry of an LP is a group action that preserves both the cost vector and the inequality system (i.e. the underlying polyhedron).

Definition 17. A symmetry of a matrix \(A \in \mathbb{R}^{m \times d} \) is a matrix \(P \in \text{Perm}(d) \) such that there exists a \(P' \in \text{Perm}(d) \) with \(P'AP = A \)

Definition 18. A symmetry of an inequality system \(Ax \leq b \) is a matrix \(P \in \text{Perm}(d) \) that is a symmetry of matrix \(A \) i.e. \(P'AP = A \) for some \(P' \in \text{Perm}(m) \) and \(Pb = b \)

Symmetry of an inequality system preserves the inequality system i.e. the set of inequalities in the system is fixed setwise. Now we can define symmetry of a linear program.

Definition 19. A symmetry of a LP \(\Lambda \) is a matrix \(P \in \text{Perm}(d) \) that is a symmetry of its inequality system \(Ax \leq b \) that preserves the cost vector \(c^tP = c^t \)

Set of all symmetries of a linear program forms a subgroup of \(\text{Perm}(d) \).

Definition 20. The full symmetry group of a LP is

\[
G^\Lambda \triangleq \left\{ P \in \text{Perm}(d) \mid c^tP = c \text{ and } \exists P' \in \text{Perm}(m) \text{ s.t. } (P'P = A) \right\}
\]

Let \(\text{Fix}_{G^\Lambda} (\mathbb{R}^d) \) be the subset (in fact a subspace) of \(\mathbb{R}^d \) of points in \(\mathbb{R}^d \) fixed under the action of \(G^\Lambda \) on \(\mathbb{R}^d \). The dimension of \(\text{Fix}_{G^\Lambda} (\mathbb{R}^d) \) is equal to the number of orbits under the action of \(G^\Lambda \) on the set of standard basis vectors. Let \(k \triangleq \dim(\text{Fix}_{G^\Lambda} (\mathbb{R}^d)) \). The main result of [14] can be stated as follows:

Theorem 8. (Bödi and Herr) For any \(d \)-dimensional linear program with full symmetry group \(G^\Lambda \) there exists a solution of \(\Lambda \) in \(\text{Fix}_{G^\Lambda} (\mathbb{R}^d) \)

Given the full symmetry group of LP \(\Lambda \), one can construct a \(k \)-dimensional linear program \(\Lambda' \) such that a solution to \(\Lambda \) can be obtained by solving \(\Lambda' \). \(\Lambda' \) is defined as follows:

\[
\max \ c^t \tilde{P} M y \\
\text{s.t.} \ A \tilde{P} M y \leq b, \ y \in \mathbb{R}_0^k
\]

\(\tilde{P} \) is a projection matrix, with associated map \(f_{\tilde{P}} : \mathbb{R}^d \to \text{Fix}_{G^\Lambda} (\mathbb{R}^d) : x \mapsto \tilde{P} x \). We will now see how \(\tilde{P} \) is constructed. Let \(x_1, \ldots, x_d \) be the variables associated with linear program \(\Lambda \) in equation 23. \(\tilde{P} \) is constructed using orbits under action of \(G^\Lambda \) on set \(\{x_1, \ldots, x_d\} \). Let \(\text{orb}(i) \triangleq \{j \mid j \in [d] \land x_i \text{ and } x_j \text{ are in same orbit}\} \) for any \(i \in [d] \). Let \(\text{rep}(i) \) be the smallest index in \(\text{orb}(i) \). Let \(R \) be the set of all representatives. (Note that \(|R| = k \))

\[
\hat{p}_{ij} = \begin{cases} 1 & \text{if } j \in R \text{ and } i \in \text{orb}(j) \\ 0 & \text{otherwise} \end{cases}
\]

The matrix \(M_r \) is constructed as follows:

\[
M_r = [v_{i_1}, \ldots, v_{i_k}], \ v_{i_p} = \sum_{j \in \text{orb}(i_p)} e_j, \ i_p \in R
\]

Following theorem provides a way of obtaining optimal solution \(x^*_\text{fix} \in \text{Fix}(\mathbb{R}^d) \) given a solution \(y^* \) of \(\Lambda' \)

Theorem 9. (Bödi and Herr) If \(y^* \) is solution of \(\Lambda' \) then \(M_r y^* \) is solution of \(\Lambda \)

Another result in [14] pertains to symmetry group of intersection of two inequality systems:

Theorem 10. Given a symmetry group \(G \leq \text{Perm}(d) \) of two inequality systems \(Ax \leq b \) and \(A'x \leq b' \), where \(A \in \mathbb{R}^{m \times d}, A' \in \mathbb{R}^{m' \times d}, b \in \mathbb{R}^m, \text{ and } b' \in \mathbb{R}^{m'} \), the group \(G \) is also a symmetry group of the inequality system

\[
\begin{bmatrix}
A \\
A'
\end{bmatrix} x \leq
\begin{bmatrix}
b \\
b'
\end{bmatrix}
\]

(28)