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ABSTRACT

There are four basic synchronization tasks in commu-
nications systems: the receiver must determine the phase
and frequency of the carrier signal, and it must deter-
mine the timing and period of the symbol clock. All
four of these tasks can be solved via gradient meth-
ods, and many common algorithms such as the Phase
locked Loop, Costas Loop, Band-edge timing, and out-
put energy maximization (for clock recovery) can be
viewed as a gradient algorithm applied to specific cost
functions. This paper presents an overview of synchro-
nization by stating a formal definition of an “adaptive
element”. By looking at the cost functions, insight can
be gained as to how the varous elements can be com-
bined, sequenced, and compared.

Introduction

This paper defines an abstract “adaptive element” as
a parameterized subsystem with input and output sig-
nals, a system function (that specifies how the output is
constructed from the input), a cost function (that helps
determine the “best” value for the parameters), and
a stepsize (that specifies how fast the parameter may
change). The cost function can be used to draw the
error surface, which is useful in understanding gross
features of the element such as how many fixed points
it may have. The “sensitivity” function of the adap-
tive element (the derivative of the cost with respect to
a parameter of interest) is useful as a measure of the re-
sponsiveness of the element to changes in the parame-
ters. Speaking loosely, higher sensitivity implies faster
convergence of the adaptation, though it may also be
associated with undesirable aspects such as suseptibil-
ity to noise. The sensitivity function may be useful as
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a tool to choose among alternative cost functions in a
given application setting.

When a system contains more than a single adap-
tive element, analogous tools can be used by recogniz-
ing that the cost function of one adaptive element is
not necessarily independent of the parameters of an-
other element. The “cross sensitivity ”is defined as the
derivative of the cost function of one adaptive element
to the parameters of another. This may be useful in
terms of ordering a series of adaptive elements. Again
speaking loosely, when two elements have low cross
sensitivity, each operates independently of the other.
When the cross sensitivities are large, there is signifi-
cant interaction between the elements.

What is an Adaptive Element?

Definition: An adaptive element £ is a (possibly non-
linear, generally time-varying) system with (1) input
Tk, (2) ouput i, (3) parameter (vector) 0 (4) system
function f(-) that defines the output in terms of the in-
puts 2, xx—1, ... and the parameters g (and possibly
also the previous outputs yi_; for j > 1), and (5) a
differentiable cost function J(4). Because of our fo-
cus on communication receivers, we immediately spe-
cialize to the case where the cost function will be op-
timized via a gradient approach. Thus the parameter
vector (denoted Ok at time k) will be adapted over time

by
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where p 1s a positive stepsize that helps to define the
size of the update. Thus, the adaptive element is also



characterized by (6) a stepsize (vector) u. While (6) is
not a necessary part of the model, its inclusion makes
the statements of the results easier.

Example 1 (Phase Locked Loop) A PLLisoneofthe
most common adaptive receiver elements. In the noise
free case, the input signal x(t) = cos(2w fot + ¢) is
presumed to be a sinusoid of known frequency fy and
unknown phase ¢. The output y(t) is an estimate of ¢,
and is thus equal 1o the parameter vector 8. The cost
Junction to be maximized is

Jprr(8) = LPF{x(t) cos(27 fot + 6)}.

where LPF{-} represents an ideal low pass filter that

removes all energy above 3 fo /2. Straightforward trigono-

metric manipulation shows that this can be rewritien

Jpr(6) = %cos@ _4). )

Accordingly, the corresponding iterative algorithm is

01k 4+ 1] = 0[k] — uLPF{a(kT) sin (27 fokT + 0[k]) },
3

which is a standard formula for the PLL [3].

Example 2 (Costas Loop) With the same input, out-

put, and system function as for the PLL, the cost for
the Costas loop is

A 1
JoosTas(0) = 2 cos*(¢ — 0). G

The derivative of (4) is cos(¢—0) sin(¢—8). As above,
cos(¢p—0) = LPF{2x(t) cos(27 fot 4+ 0) }. Similarly,
sin(¢ —0) = —LPF{2z(t) sin (27 fot + 0) }. Accord-
ingly, the corresponding iterative algorithm is

01k 4+ 1) = 0[k] — nLPF{2x(kT) sin (27 fokT 4 0[k]) }
LPF{2z(kT) cos(2m fokT + 0[k]) }.

Example 3 (Decision Directed PLL) Let s(t) be a pulse

shaped signal created from a message where the sym-
bols are chosen from some finite alphabet. At the trans-
mitter, s(t) is modulated by a carrier at frequency fy
with unknown phase ¢, and at the receiver it is de-
modulated by a sinusoid and then low pass filtered to
create the input o the adaptive element

x(t) = 2LPF{s(t) cos(27 fot + ¢) cos(27w fot + 6)}.
%)

When the phases ¢ and 0 are equal, then z(t) = s(t).
In particular, x(kT) = s(kT) at the sample instants
t = kT, where the s(kT) are elements of the alpha-
bet. On the other hand, if ¢ # 0, then x(kT') will not
be a member of the alphabei. The difference between
what x(kT) is, and what it should be, can be used to
Jorm a cost function and hence a phase tracking algo-
rithm. The memoryless nonlinearity (QQ(z) maps any
real number z lo the closest element of the symbol
alphabet. The cost function for the decision directed
method is

Jpp(8) = (Q(z(kT)) —z(kT))*.  (©)

dxg;T) can be calculated directly from (5) and the al-

gorithmis:

Ok + 1] = 6K — 4 (Q(z(KT)) — 2(kT)) (D
LPF{z(kT)sin(2r fokT + 6[k]) }

Example 4 (Minimization of the Cluster Variance)
The problem of clock recovery is to choose the sam-
pling instants 7. The input 1o the element is the M
times oversampled signal x(t). If the combination of
the pulse shape and the maitched filter is Nyquist, then
the value of the waveform is equal 1o the value of the
data at the correct sampling times. If there is a train-
ing sequence, then this can be used as the basis for
the cost. When there is no training, it is possible to
substitute the cluster variance E{(Q(z[k]) — z[k])*}
where x[k] = x(EL + 7). Since it is impossible 1o di-
rectly optimize an expectation, the goal is to find T to
minimize

Jov(r) = (Q(a[k]) — «[k])*. (®)

Applying the standard iterative solution yields

dx[k]
dr

Tk + 1] Tk + 2p(Q (2 [k]) — 2[k])

To turn this into an algorithm that can be easily simu-
lated, the derivative can be approximated numerically,
one possibility is to use

de[k] 1 (

dr

ok +8) — a5 4 7l - 9)
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Example 5 (Output Energy Maximization) Withthe
same set up as in Example 4, another useful cost is de-
fined by E{2?[k]} = E{a*(5F + 7)}. This can be
approximated using the instantaneous cost

Jog(r) = «*[k], ©
which leads directly 1o the gradient algorithm

Tk + 1] = 7[k] + Q,ux[k]dz—g_k] (10)

where the derivative can be approximated numerically.

The Sensitivity Function

The shape of the cost function near the optimal value
#* can be used to gain insight into the convergence and
tracking abilityies of an adaptive element. Consider
the sensitivity function

d.J (0)

S = .
06

(11)

Since the adaptive element is updated proportionally
to 1S, S is directly proportional to the speed at which
the adaptive parameter can change.

The cost function and the related sensitivity func-
tion $ may be useful when comparing two possible
adaptive elements that are both designed for the same
task. For instance, suppose that the first element £ 4 is
characterized by

Thy Yy 04y F () Ja(04), pra

while the second adaptive element g is characterized
by R R
Tk, Yr, 08, f(+), JB(0B), 1B

Since the inputs, outputs, and system functions are the
same for both elements, both are designed for the same
problem setting. Iocal properties of the cost and sen-
sitivity functions may be useful in specifying desir-
able properties of the two elements and may provide
a way to talk about the performance of £4 and £ in
a concrete way. Since the cost functions .J4 and Jp
are different, they may have different stationary points
% and 6%. If one of these stationary points leads to
better system performance then it may be preferable to
the other. If the region in which the cost function is
unimodal is larger for one than the other, then it may

be preferred because initialization of the parameter 0
will be less critical. If the magnitude of the sensitiv-
ity function |S 4| is greater than |Sg|, then the element
& 4 may be preferable because it will likely have faster
convergence.

Example 6 The error surfaces for the three carrier re-
covery methods in Examples 1, 2, and 3 are shown in
Figure 1. Observe that the fixed points and the regions
of convergence differ for the three methods, providing
valuable information about the behavior of the algo-
rithms. When the error surface is flat, the sensitivity is
zero, and the algorithm is at a fixed point.
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Figure 1: The error surfaces for the PLL (2) in the top
plot, the Costas loop (4) in the middle plot, and the
Decision Directed method (6) in the bottom plot.

The Cross-Sensitivity Function

Many receivers are designed with multiple cascaded
adaptive elements. The cross-sensitivity function quan-
tifies how the cost function of one element depends on
the parameter of another, and gives a measure of the
degree of interaction between the different elements.

To be concrete, consider two adaptive elements € 4
and £p which are characterized by

gA : $?7y?7éAA7fA(')7JA(éAA)7HA
EB : $Evkav€B7fB(')7JB(OB)muB

Then the cross sensitivity defines how a change in ele-
ment A effects the cost function of element B
0.J5(0p)

S = —", 12
AB 6. (12)



The cross sensitivity of &g to £4 is defined analo-
gously. Sometimes (as in Example 8), it is possible
to merge the two adaptive elements into a single (vec-
tor) element. The behavior of the coupled system can
be understood by looking at the multidimensional er-
ror surface. Sometimes, the form of the individual ele-
ments precludes expressing the pair as both operating
on a single cost function. In this case, an extended no-
tion of error surface considers two families of surfaces
Ja (0;1) | is (plotted over a range of values 05) and the

analogous J () |,

e ——

Figure 2: Plot of Sp4 as a function of # and 7. A
SRRC pulse shape is assumed with a rolloff factor of
0.5. There is a single minimum within each 27.

Example 7 Consider a receiver that uses the PLL of
Example 1 (system & 4 with 64 =6 of (3)) in cascade
with the OF method of clock recovery (system Eg with
éB =1 0f (10)). Since Sp4 = 0, the adaptive element
Ep has no impact on € 4; the carrier recovery oper-
ates independently of the clock recovery. On the other

hand,

5., 00 47k
a9[k]
where
x(t) = LPF{s(t) cos(27 ft + ¢) cos(2rt + ) }.
This simplifies to
Sap =« (kKT /M + 7)s(kT /M + 7) cos(¢ — 0).

When the decisions are correct s(kT /M+1) = a (kT /M+
T), and this is just a constant times Sp. Except for

those § where cos(¢ — 0) = 0, the minimizing points
of Ep are unchanged by the presence of €. This is
plottedin Figure 2.

Example 8 Suppose that £ 4 is the DD PLL of Exam-
ple 3 and that Eg is the CV method of clock recovery in
Example 4. Because the form of Jpp in (6) is the same
asthatof Jov in (8), Sap =Spand Sgp4 = S4. This
is plotted in Figure 3.

Figure 3: Plot of Sp4 as a function of # and 7. A
SRRC pulse shape is assumed with a rolloff factor of
0.5. There are many minima, and the behavior of the
algorithm may be unreliable.

Thus, when the cross sensitivity functions are nontriv-
ial, the two elements may interfere. The cross sensitiv-
ity between adaptive elements gives a way to qualita-
tively and quantitatively talk about the interaction be-
tween adaptive elements that operate simultancously
within a given system. The cross sensitivity can be
used to study and understand possible re-arrangements
of the system.
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