An equivalence between network coding and index coding
—A paper by Effros, Rouayheb, Langberg [1]

Congduan Li

ASPIRG, Drexel University

February 21, 2014
Outline

1. Network coding (NC) intro
2. Index coding (IC) intro
3. Mapping network coding to index coding
4. Equivalence proofs
Outline

1. Network coding (NC) intro
2. Index coding (IC) intro
3. Mapping network coding to index coding
4. Equivalence proofs
Network coding (NC) model

- Directed acyclic network $G = (V, E)$
- Source s with rate R_s, edge e with capacity C_e, sink node t requires $\beta(t)$
- Independent sources
- Variables on out-going edges are function of variables on in-coming edges
- Goal: transmit information from source to sink via network codes
Any network has associated multiple unicast network

In [2], it is shown that for any multi-multicast network, there exists an associated multiple unicast network such that one is solvable if and only if the other is solvable.

- **Construction**
 - If a source message a is transmitted by more than one sources, add a new super node to transmit a to those sources.
Any network has associated multiple unicast network

- Construction (cont.)
 - If a source message b is required by more than one sink nodes, add 5 new nodes to let b is required by only one.
 - Iterations may be needed for the cases where more than 2 sinks requiring same message.
Multi-multicast to multi-unicast

Thus, W.O.L.G, we can only consider the multi-unicast networks.

- Source with index k has rate R_k, edge e with capacity C_e, sink node with index k requires Y_k
- Independent sources
- Variables on out-going edges are function of variables on in-coming edges
- Goal: K source/sink pairs wish to communicate
Achievable rate tuple in multi-unicast NC

Rate tuple $R = (R_1, \ldots, R_K)$ is achievable with block length n (or (R, n)-feasible) if $\exists \{S_k\}, \{X_e\}$:

- **Rate**: Source Y_k independent and uniform over $[2^{R_k n}]$
- **Edge capacity**: Edge X_e with support $[2^{C_e n}]$
- **Functionality**: For edge e, is function of incoming edges, $X_e = f_e(X_{e1}, X_{e2}, \ldots)$
- **Decoding**: Sink t_k, requires S_k
Outline

1. Network coding (NC) intro
2. Index coding (IC) intro
3. Mapping network coding to index coding
4. Equivalence proofs
Index coding (IC) motivation

- A set of packets need to be delivered to a set of users
- Users may have some information already (side information)
- Broadcast channel is used by the server
- Goal: minimum transmission times

Users have:
- User 1: M_2, M_4
- User 2: M_1, M_3
- User 3: M_2, M_4
- User 4: M_1

Server has:
- M_1, M_2, M_3, M_4
Index coding motivation

- Traditional way: send M_1, M_2, M_3, M_4 respectively
- Coding: send $M_2 + M_3, M_1 + M_4$ respectively
- Side information is utilized
- Transmission times are reduced

Want: M_1
Has: M_2, M_4

Want: M_2
Has: M_1, M_3

Want: M_3
Has: M_2, M_4

Want: M_4
Has: M_1
Index coding model

The above example can be represented as a typical index coding model:

- Sources, sinks with requirements and side information, broadcasting node with coding
- Broadcast link has capacity C_B, others unlimited
Achievable rate in IC

Rate tuple $R = (R_1, \ldots, R_K)$ is achievable with block length n (or (R, n)-feasible) if $\exists \{M_k\}, \{X_B\}$:

- **Rate**: Source M_k independent and uniform over $[2^{R_k n}]$
 - **Edge capacity**: Edge X_B with support $[2^{C_B n}]$
 - **Functionality**: For edge B, is function of incoming edges, $X_B = f_B(M_1, M_2, \ldots)$
 - **Decoding**: Sink t_k, requires M_k
Outline

1. Network coding (NC) intro
2. Index coding (IC) intro
3. Mapping network coding to index coding
4. Equivalence proofs
Reduce NC to IC

Instances in IC:

- Sources: NC sources and NC edges
- Sinks: NC sinks, NC edges and a special sink representing all edges are function of all NC sources
- For NC edge e, sink t_e in IC wants X_e and has as side information all IC sources incoming to e in NC

IC encodes topology of NC in its sinks!
Reduce NC to IC

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>$S_1, \ldots S_K$</td>
<td>${S'_k}, {S'_e}$</td>
</tr>
<tr>
<td>Sinks</td>
<td>$t_1, \ldots t_K$</td>
<td>${t'_k}, {t'e}, t{all}$</td>
</tr>
<tr>
<td>Capacity</td>
<td>C_e</td>
<td>$C_B = \sum C_e$</td>
</tr>
<tr>
<td>Rate</td>
<td>$R_1, \ldots R_K$</td>
<td>$R'_k = R_k, R'_e = C_e$</td>
</tr>
</tbody>
</table>
Outline

1. Network coding (NC) intro
2. Index coding (IC) intro
3. Mapping network coding to index coding
4. Equivalence proofs
Theorem

For any NC with rate tuple R, one can construct an IC with rate R' such that for any block length n: NC is (R, n)-feasible iff IC is (R', n)-feasible.

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>S_1, \ldots, S_K</td>
<td>${S'_k}, {S'_e}$</td>
</tr>
<tr>
<td>Sinks</td>
<td>t_1, \ldots, t_K</td>
<td>${t'_k}, {t'e}, t{all}$</td>
</tr>
<tr>
<td>Capacity</td>
<td>C_e</td>
<td>$C_B = \sum C_e$</td>
</tr>
<tr>
<td>Rate</td>
<td>R_1, \ldots, R_K</td>
<td>$R'_k = R_k, R'_e = C_e$</td>
</tr>
</tbody>
</table>
Proof: NC→IC

Basic idea: simulate NC solution in IC decoding.

- Each edge e in NC has a global function $F_e(S_1, \ldots S_K) = X_e$
- Recall X_e has support $[2^{C_e n}]$, $C_B = \sum C_e$ and X_B has support $[2^{C_B n}]$
- X_B can be divided into chunks to associated with e
- Let $X_B(e) = S'_e + F_e(S'_1, \ldots, S'_K)$

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>$S_1, \ldots S_K$</td>
<td>${S'_k}$, ${S'_e}$</td>
</tr>
<tr>
<td>Sinks</td>
<td>$t_1, \ldots t_K$</td>
<td>${t'_k}$, ${t'e}$, $t{all}$</td>
</tr>
<tr>
<td>Capacity</td>
<td>C_e</td>
<td>$C_B = \sum C_e$</td>
</tr>
<tr>
<td>Rate</td>
<td>$R_1, \ldots R_K$</td>
<td>$R'_k = R_k$, $R'_e = C_e$</td>
</tr>
</tbody>
</table>
Proof: NC \rightarrow IC (cont.)

- **Decoding:**
 - consider t'_e: wants S'_e and has $\{S'_a\}$ for edges $a \in \ln(e)$, also receives X_B
 - for each a, compute $X_B(a) - S'_a = F_a(S'_1, \ldots, S'_K)$
 - use local function f_e to compute $f_e(F_a_1(S'_1, \ldots, S'_K) \ldots) = F_e(S'_1, \ldots, S'_K)$
 - Then decode $S'_e = X_B(e) - F_e(S'_1, \ldots, S'_K)$
 - Same process for other sinks

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>$S_1, \ldots S_K$</td>
<td>${S'_k}, {S'_e}$</td>
</tr>
<tr>
<td>Sinks</td>
<td>$t_1, \ldots t_K$</td>
<td>${t'_k}, {t'e}, t{all}$</td>
</tr>
<tr>
<td>Capacity</td>
<td>C_e</td>
<td>$C_B = \sum C_e$</td>
</tr>
<tr>
<td>Rate</td>
<td>$R_1, \ldots R_K$</td>
<td>$R'_k = R_k, R'_e = C_e$</td>
</tr>
</tbody>
</table>
Proof: IC → NC

- Encoding function $f_B(\{S'_k\}, \{S'_e\})$
- t_{all} requires all S'_E decodable given any S'_K and X_B
- Crucial property: for any S'_K, $\exists S'_E$ such that $X_B = f_B(S'_K, S'_E) = \sigma$
- To define NC we need $X_B = \sigma$

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>$S_1, \ldots S_K$</td>
<td>${S'_k}, {S'_e}$</td>
</tr>
<tr>
<td>Sinks</td>
<td>$t_1, \ldots t_K$</td>
<td>${t'_k}, {t'e}, t{all}$</td>
</tr>
<tr>
<td>Capacity</td>
<td>C_e</td>
<td>$C_B = \sum C_e$</td>
</tr>
<tr>
<td>Rate</td>
<td>$R_1, \ldots R_K$</td>
<td>$R'_k = R_k, R'_e = C_e$</td>
</tr>
</tbody>
</table>
Proof: IC→NC (cont.)

- Consider edge \(e \) in NC, we need local encoding function
 \(f_e(X_{a1}, \ldots) = X_e \)
- We have decoding function for \(t'_e \) in IC:
 \[g'_e(S'_{a1}, \ldots, X_B) = S'_e \]
- Let
 \[f_e(X_{a1}, \ldots) = g'_e(X_{a1}, \ldots, \sigma) \]
- Similarly for sink \(k \) in NC, we need decoding function
 \(g_k(X_{a1}, \ldots) = S_k \)
- We have \(g'_k(S_{a1}, \ldots f_B) = S'_k \), and then let
 \[g_k(X_{a1}, \ldots) = g'_k(X_{a1}, \ldots, \sigma) \]
- Let \(S_I = S'_I, X_e = S'_e \), can show the correctness of enc. (dec.)
Proof: IC→NC (cont.)

- Encoding:

\[X_e = f_e(X_{a1}, \ldots) \]
\[= g'_{e}(X_{a1}, \ldots, \sigma) \]
\[= g_{e}(X_{a1}, \ldots, f_{B}(S'_{I}, S'_{E})) \]
\[= g_{e}(S'_{a1}, \ldots, f_{B}(S'_{I}, S'_{E})) \]
\[= S'_{e} \]

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>(S_1, \ldots S_K)</td>
<td>{ S'_k }, { S'_e }</td>
</tr>
<tr>
<td>Sinks</td>
<td>(t_1, \ldots t_K)</td>
<td>{ t'_k }, { t'e }, t{all}</td>
</tr>
<tr>
<td>Capacity</td>
<td>(C_e)</td>
<td>(C_B = \sum C_e)</td>
</tr>
<tr>
<td>Rate</td>
<td>(R_1, \ldots R_K)</td>
<td>(R'_k = R_k, R'_e = C_e)</td>
</tr>
</tbody>
</table>
Proof: IC \rightarrow NC (cont.)

- Decoding:

\[\hat{S}_i = g_i(X_{a1}, \ldots) \]
\[= g'_i(X_{a1}, \ldots, \sigma) \]
\[= g'_i(S'_{a1}, \ldots, f_B(S'_I, S'_E)) \]
\[= S'_i \]
\[= S_i \]

<table>
<thead>
<tr>
<th>Reduction</th>
<th>NC</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>$S_1, \ldots S_K$</td>
<td>${S'_k}, {S'_e}$</td>
</tr>
<tr>
<td>Sinks</td>
<td>$t_1, \ldots t_K$</td>
<td>${t'_k}, {t'e}, t{all}$</td>
</tr>
<tr>
<td>Capacity</td>
<td>C_e</td>
<td>$C_B = \sum C_e$</td>
</tr>
<tr>
<td>Rate</td>
<td>$R_1, \ldots R_K$</td>
<td>$R'_k = R_k, R'_e = C_e$</td>
</tr>
</tbody>
</table>