Interactive Communication for Resource Allocation

Jie Ren
jr843@drexel.edu

John MacLaren Walsh
jmw96@drexel.edu

Adaptive Signal Processing and Information Theory Group
Department of Electrical and Computer Engineering
Drexel University, Philadelphia, PA 19104

This research has been supported by the Air Force Research Laboratory under agreement number FA9550-12-1-0086.

March 19th, 2014
Outline

1. Introduction
2. Problem Model
3. Analysis
4. Results
5. Conclusions
Motivation

- Which user to assign the subcarrier to
- Which modulation and coding scheme to employ

M. I. Salman etc. "IETE Technical Review"
Adaptive Modulation and Coding

- Overheads
 - Reference Signals
 - Channel Quality Indicators
 - Control Decisions

- Occupy the OFDMA resource blocks
- Approximately 1/4 to 1/3 of all downlink transmission in LTE
Introduction

Background

Rateless Codes

- Almost achieve channel capacity
- Without requiring of channel information at the transmitter side
- Allow variable block length

BS: wishes to maximize the system throughput
Only needs to learn the arg-max

http://www.telematica.polito.it/oldsite/sas-ipl/
Background

Interactive Communication

- Interaction for Lossy Source Reproduction (Kaspi 1985)
- Interaction for function computation (Ishwar & Ma 2011)
 - Benefit can be arbitrarily large
 - Infinite rounds interaction may help

\[\mathcal{R}_t = \{ \mathbf{R} | \exists \mathbf{U}^t, \ s.t. \forall i = 1, \ldots, t \]

\[R_i \geq I(X; U_i | Y, U^{i-1}), \ U_i - (X, U^{i-1}) - Y, \ i \text{ odd} \]

\[R_i \geq I(Y; U_i | Y, U^{i-1}), \ U_i - (Y, U^{i-1}) - X, \ i \text{ even} \]

\[H(f(X, Y) | Y, U^t) = 0 \]
Main Contribution

Achievable Interactive Communication Scheme for Resource Allocation

- Determine the arg-max (use rateless codes for data transmission)
- Solve by dynamic programming
- Show huge savings
Outline

1. Introduction
2. Problem Model
3. Analysis
4. Results
5. Conclusions
Problem Model

\[U_t(\lambda_t = 3dB) \]

Notations

- \(X_i \in X_t = \{ a_t, \ldots, b_t \} \)
- \(U_t \) Broadcasting message at round \(t \)
- \(V_t^i \) Replied message from MS \(i \) at round \(t \)

Achievable Interaction Scheme

1. BS broadcasts a threshold \(\lambda_t \) at round \(t \)
2. MS \(i \) replies a 1 if \(X_i \geq \lambda_t \) and 0 otherwise
3. Stops when BS knows arg-max reliably
Some Assumptions

- BS knows the initial distribution of X
- BS knows the initial number of MSs
- MSs are not allowed to communicate with each other
Outline

1. Introduction
2. Problem Model
3. Analysis
4. Results
5. Conclusions
Non-increasing Support set of X

If some users reply 1

$$a_{t+1} = \lambda_t$$
$$b_{t+1} = b_t$$
$$F_{t+1}(x) = \frac{F_t(x) - F_t(\lambda_t)}{F_t(b_t) - F_t(\lambda_t)}$$

(2)

If no user replies 1

$$a_{t+1} = a_t$$
$$b_{t+1} = \lambda_t$$
$$F_{t+1}(x) = \frac{F_t(x) - F_t(a_t)}{F_t(\lambda_t) - F_t(a_t)}$$

(3)
Analysis

Aggregate rate

\[R_t(\lambda) = H(\lambda|\lambda_1, \cdots, \lambda_{t-1}) + N_t + (F_t(\lambda))^{N_t} R^*(N_t, a_t, \lambda) \]
\[+ \sum_{i=1}^{N_t} (1 - F_t(\lambda))^i F_t(\lambda)^{N_t-i} \frac{N_t!}{i!(N_t-i)!} R^*(i, \lambda, b_t) \]

Policy Iteration

\[\lambda_t^* = \arg \min_{\lambda} R_t(\lambda) \]
Analysis

- Efficiently Encode the Threshold
 \[H(\lambda_t|\lambda_1, \ldots, \lambda_{t-1}) \quad (6) \]

- Why \(H(N_t|N_{t-1}) \) works?
 - \(\lambda_t \) and \(N_t \) determines \(\lambda^*_t \)
 - \(\lambda_{t-1}, N_{t-1} \) and \(N_t \) determines \(\lambda_t \)
 \[
 \lambda_t = \begin{cases}
 \{\lambda_{t-1}^*, b_{t-1}\} & \text{if } N_t < N_{t-1} \\
 \{a_{t-1}, \lambda_{t-1}^*\} & \text{if } N_t = N_{t-1} \text{ and } \lambda_{t-1}^* > x_i \\
 \{\lambda_{t-1}^*, b_{t-1}\} & \text{if } N_t = N_{t-1} \text{ and } \lambda_{t-1}^* \leq x_i
 \end{cases}
 \quad (7)
 \]

- Two other strategies
 - Non-conditioning Encode the Threshold: \(H(\lambda_t) \)
 - Encode the Number of Users: \(H(N_t|N_{t-1}) \)
Outline

1 Introduction

2 Problem Model

3 Analysis

4 Results

5 Conclusions
Results

- $\mathcal{X} = \{1, \ldots, 16\}$
Some Extensions

Interaction with Distortion

\[\mathbb{E}[\max\{X_1, \ldots, X_{N_t}\} - X_i] \leq D \] (8)

Bits Cost Vs. Time Cost

\[C = \mu R + (1 - \mu) T \] (9)
Outline

1 Introduction
2 Problem Model
3 Analysis
4 Results
5 Conclusions
Conclusions

Contribution & Future Work

Review of Contribution

• Achievable Interactive Communication Scheme for Resource Allocation
• Solve by Dynamic Programming

Future Work

• Consider Scalar Quantization than the 1-bit Message
• Fundamental Limits (Rate-distortion Curve)
• Resource Allocation in MIMO system
Supported by the AFOSR under agreement number FA9550-12-1-0086