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Abstract—We propose an algorithm for computing polyhedral
bounds on the rate regions of multi-source multi-sink network
coding instances given the knowledge of symmetries of the
instance as captured by the network symmetry group. We show
how the network symmetry group can be interpreted as a group
of symmetries of a polyhedron, which in turn enables the use
techniques for exploiting symmetry in polyhedral computation to
reduce the complexity of calculating the rate region. We apply
these techniques to the polyhedral projection algorithm chm to
list only those facets and extreme points of a polyhedral bound on
rate region that are inequivalent under the action of the network
symmetry group. Additionally, a generalization of this algorithm
that can exploit richer super-groups of polyhedral symmetries,
the restricted affine symmetry groups, is discussed.

Index Terms—network coding, symmetry, polyhedral projection

I. INTRODUCTION

An implicit characterization of the rate region of multi-
source multi-sink network coding over directed acyclic graphs
(MSNC) was provided by Yan et. al. [1] in terms of the entropy
function region I'}. For n > 4, however, I'} and its closure
Iy are, to date, unknown. Explicit outer and inner polyhedral
bounds on rate regions can be obtained for moderate sized
instances of MSNC problem using polyhedral computation
techniques [2]-[4] and isomorph free exhaustive generation
techniques [5] respectively. When the explicit inner and outer
bounds match, we obtain an explicit expression of the exact
rate region of the MSNC instance.

Computing such polyhedral bounds on a MSNC rate region
amounts to polyhedral projection from a space whose di-
mension is exponential in n to a space whose dimension
is linear in n. The polyhedral projection algorithm Convex
Hull Method (CHM), first proposed in [6], is well suited to
such projection problems with a small projection dimension
relative to original dimension, including the calculation of
non-Shannon information inequalities [7] and rate regions for
Multilevel Diversity Coding Schemes [4], [8]. Nevertheless,
even with CHM, the process of calculating these bounds is
highly complex, and, in order to enable the calculation of rate
regions for the largest networks possible, it is imperative to
exploit symmetry to reduce its complexity.

Recently, in [9], the notion of symmetry in network coding
was formalized through the definition of a network symmetry
group (NSG). The NSG for a MSNC instance with a total
of n source and edge random variables is a subgroup of S,
capturing the symmetries imparted to its network codes and
rate regions by the underlying directed acyclic graph.

In this paper, we show how to reduce the complexity of CHM,
as applied to the calculation of outer bounds on MSNC rate
regions, by exploiting the knowledge of the network’s NSG.
We begin in §II with a review of polyhedral symmetries and
network symmetry groups, followed by a detailed description
in §III of our implementation [10] of the CHM algorithm,
which includes some improvements over the original [6].
These ingredients enable us in §IV to provide a symmetry
exploiting variant of CHM. §IV-D then demonstrates how to
apply the resulting algorithm to compute network coding rate
region outer bounds for a series of example networks.

II. SYMMETRIES OF POLYHEDRAL BOUNDS

An instance of a MSNC problem constsis of a directed acyclic
graph G = (V, E), source and sink sets S, 7 C V, and sink
demand function B : T — 2\ ), with n = |S| + |E|. The
goal is for every source s € S to send, via a blocked message
across all time, at every time instant an average of w, bits
to be successfully decoded (i.e. with diminishing probability
of error as the block length grows) at all sink nodes ¢ such
that s € S(t¢). This communication is to be carried out by
sending no more than R. bits per time instant over each
edge e € I, with each node v € V only allowed to receive
messages on incoming edges and encode them into messages
on outgoing edges. Collecting the source rates w = [ws|s € S]
and edge rates 7 = [R.|e € E], the network coding rate region
is a convex cone which is the closure of the set of vectors
[wT,7T]T that are simultaneously possible under some code.
It has been shown [1], [9] that the problem of computing an
outer or inner bound to a network coding rate region can be
expressed as the polyhedral projection

Ra = DFOJ‘S‘+|E|(T?L n ‘CTQS)7 a € {in, Out} (1)

Here, the sets are regarded as subsets of R2"~t"  with
representative vectors [w,r, h|, where h is indexed by the
set 25YE \ ) in the order of a binary indicator/counter. £,
reflects the linear constraints that Vi € V,Ve € E, Vs € S

Zhs = hs, hin@) = hingyuout(iy, he < Re, hs > ws, (2)
seS

with In(7)/Out() the incoming/outgoing edges and sources
to node ¢ respectively. I'? is the Cartesian product of RLSJ)HEl
(for the dimensions w, ), and an outer/inner bound for the

region of entropic vectors fjv [1], [8] for a = out/in, resp.



A. Network Symmetry Groups
A network symmetry, as defined in [9], is special type of

permutation of the set SUF, i.e. a special type of bijection o :
SUFE — SUF. Under the action of this permutation, the vector
(w77, hT]T is mapped to a new vector o ([w?,rT, KT|T) =
@7, 7R )T With @y = wo(s), V5 € S, Fe = To(e), Ve € E
and h 4 = ho(ay, YA C SUE. Any reasonable inner or outer
bound on entropy should be symmetric in the labels of the
random variables and should satisfy o(I'%) = T'? for any such
permutation ¢. Any such permutation that also leaves L[},
setwise invariant, i.e. with o(L1}3) = L1} is called a network
symmetry, and the collection of all network symmetries form
the network symmetry group (NSG) with the operator of
composition. Because the independence requirement for the

<(2,3)(a,b),(1,2)(b,c)> <(2,3)(b,c),(1,2)(a,b)> <(2,3)(b,c),(1,2)(a,b)>

Figure 1: Six instances of 3-source 3-encoder I-DSC problem
that have NSG of order 6. The NSGs were computed via a
construction given in [9] using graph automorphism algorithms
implemented in SageMath [11]. The generators of respective
NSGs are specified below each figure, written in the form of
permutations of subscripts of random variable associated with
sources ({1,2}) and encoders ({a, b, c})

sources must be stabilized under this requirement, any such
NSG must satisfy ¢(S) = S and o(F) = E. [9] shows
that the NSG for the network coding problem (G,S,T, )
can be calculated as the subgroup of the automorphism group
of the line graph of a circulation graph formed from G and 3
that setwise stabilizes S and F. Fig. 1 provides several small
examples of NSGs.

B. Polyhedral Symmetries

In what follows, boldface capital and small letters denote
matrices and column vectors resp. and N, refers to the
set {1,...,n}. A polyhedron P C R? [12] can be repre-
sented either as the intersection of a finite number of closed
halfspaces, P = P(H,z) = {x € RYHx +z > 0},
referred to as its inequality representation, or, equivalently,
as the sum of the convex hull of a finite set of extreme
points and the conic hull of a finite set of extreme rays,
P = conv(V) 4 cone(Y),V € R¥*! Y ¢ R referred
to as its extremal representation. Here conv(:) and cone(-)
refer to the convex and conic hull of the column vectors of

V and Y, respectively. If ¢ = 0, we call the polyhedron
a polytope while if t = 0, we call it a polyhedral cone.
We denote homogenization of a polyhedron (see [12]) as
homog(P) and the polar of a polyhedral cone as P° ([13],
§14). For a polyhedral cone P = P(A,0) = cone(Y), the
polar P° = P(YT,0) = cone(AT). For such a cone, A,Y
are said to form a double descriptions (DD) pair [14].
Given a polyhedral cone P with extreme ray representatives
the columns of Y labeled by set N, the restricted symmetries
[15], of P can be defined as those bijections o : Ny — Ny
such that there exists a d x d matrix T € R%*? for which
Yo(i) = Ty, for all 7 € [K]

The set of all such restricted symmetries of a polyhedral
cone P form a group, with matrix multiplication as its
operation, called the restricted symmetry group (RSG). The
RSG can be computed via the automorphism group of an
appropriately constructed edge-colored graph [15], and can
be applied to general polyhedra through their homogeniza-
tion into polyhedral cones. For full dimensional polytopes
P with extreme points the columns of V, the RSG of
homog(P), denoted by G nomog(?). 1S equivalent (isomor-
phic) to the affine symmetry group (ASG) of P, defined as
Gop = {[b,T] € R T € GLyR), TP+b="P},
where GL4(R) is the general linear group.

C. NSGs and polyhedral symmetries

Since the NSG induces a permutation of the vectors
(W, rT 7|7 € T%N LY, it forms a subgroup of the RSG of
% N LY,; associated with affine transformations [b, A] that
are linear (i.e. b = 0) and with A the permutation matrix
(whose columns are permuted columns of the identity matrix)
such that o([w”,rT, RT]T) = [&JT,F’T,ET]T as previously
defined is equal to [@”, 77, BT]T = AlwT rT A", Since
the algorithms described in later sections are described for
polytopes, we need to bound I'? N L}, thereby transforming
the problem into a polytope projection problem instead of
a polyhedral cone projection problem. Fortunately, an un-
bounded polyhedron C can be transformed to create a polytope
B(C) such that the projection of the unbounded polyhedron C
can be obtained from projection of B(C). While there are
several such transformations, including the one in [6], we
describe a transformation that is more efficient in terms of
dimension of B(C) (=d) and that also preserves restricted
symmetries arising from Network Symmetry Groups.

Let Hx > 0 be the inequality description associated with a
polyhedral cone C. This cone can be transformed into a poly-
tope C' = {x € R, | Hx >0 A 1'x <1} If {x1,...,%,}
are vectors in the directions of the extreme rays of C then the
set of extreme points of C’ is V = {FL-,..., 72} U {0}.
Futhermore, the set of extreme rays of proj,(C) is equal to
the conic independent subset of rays in the directions of the
non-zero extreme points of proj,(C’).

A downside of utilizing the boundedness transform to solve the
cone projection problem is that potentially there are extreme
points of proj,(C’) that are not conic independent, and thus
not extreme rays of proj,(C). After CHM completes com-



puting the projection proj,(C’), its non-zero extreme points
are relabeled as the extreme rays of proj,(C), and the set
of homogenous inequalities of proj,(C’) are relabeled as the
inequalities of proj, (C).

When this boundedness transformation is applied to I' N
L, we get a polytope P. Each non-zero extreme point of
P =T2n LY N {17 [w”,»T A")T < 1} is the direction
of an extreme rays of I'% N L[}, scaled to sum to one,
and vice versa. Since the sum of an extreme ray direction
is invariant under a permutation from the NSG, each NSG
yields a permutation of the extreme points of P. Hence, the
NSG gives a subgroup of the ASG of P based on the action
of the network symmetries on the vectors [wT,rT,hT]T.
Furthermore, since each network symmetry is a permutation
o of the set S U E, and the projected polytope proj, (P) with
k = |S| 4 | E|, the NSG also forms a subgroup of the ASG
proj, (P), again associated with linear transformations with
permutation matrices. In this manner, the NSG gives both a
subgroup G of the ASG for proj, (P) and a subgroup G, of
the ASG for P, which, as we shall show in upcoming sections,
can be utilized together with to calculate the rate region bound
(1) with substantially lower complexity than the non-symmetry
exploiting CHM.

III. THE CONVEX HULL METHOD

Convex Hull Method (CHM) [6] is an algorithm to
project a polytope P in R? by building successively bet-
ter inner bounds to the projected polytope proj,(P) =
{x € R¥|3y € R?"* such that (x,y) € P} via the solution
of carefully selected linear programs over P. The pseudocode
for our implementation of [10] can be found in [16], and the
sequence of bounds the algorithm creates when projecting the
hypercube is depicted in Fig. 2.

[ New vertex
[ Old vertex

Initial Hull
Figure 2: (top) Sequence of inner bounds produced by CHM
and (bottom) sequence of inner bounds produced by symCHM
while projecting a 4-cube to 3 dimensions given the knowledge
all 3! permutations of basis vectors of R® form restricted
symmetries of projection

Note that we assume that the input polyhedron P is bounded
and full-dimensional, so that the dimension of its affine
hull is d. Tests for full-dimensionality and methods for the
elimination of any redundant variables and inequalities of the
input can be be implemented based on guidelines in [17].
The algorithm relies on the fact that, if ¢ € R”*, then an
extreme point that attains the solution to the linear pro-
gram with cost vector ¢ over proj,(P) can be found by

projecting the extreme point in P attaining to the solution
of the linear program with cost vector [c,0% |7 over
P, so that minyeprj, P c’x = mingep[c?,0] ,]x, and
arg Minyeproj, » €' X = proj, (arg minyep[c’, 02", ]x).

In order to obtain the initial inner bound for the
process (proc. initialhull [16]), we first obtain two extreme
points of proj,P by proj, argmingep[—1,0] ;]y and
proj, arg minygep[1,0% |]Jy. We then select a hyperplane
{xeRF|cT"x=b} containing these points (proc.
hyperplane [16]), and an additional new extreme
points is obtained by either proj, argmingep|c,0g—gly
or proj, arg minyep[—c, 04—x]y. A new hyperplane is found
containing all of the extreme points and the process is repeated
a total of k times, yielding k£ + 1 extreme points giving a full
dimensional initial inner bound. Given set V' containing k + 1
convex-independent points in R¥, computing the inequality
description of the initial hull conv(V) corresponds to a
k + 1 x k 4+ 1 matrix inversion (proc. facets [16]).

At each stage of the algorithm, a DD pair is maintained
for the current inner bound to proj,P. Each inequality in
the inequality description of the inner bound carries with
it a label, indicating whether or not it is terminal or non-
terminal. The initial inner bound has all of its inequalities
labelled as non-terminal. A non-terminal inequality ¢”x > b
is then selected (proc. isterminal [16]), and the associated
linear program minyep[c? 0] ,]x is solved over the high
dimensional polyhedron. If the solution obtained is b, the
inequality is marked as terminal. Otherwise, the extreme point
of P, say v, attaining the solution is projected to get a new
extreme point proj,v of proj,P. The DD pair of the inner
bound is then updated (proc. updatehull [16]) by adding the
new extreme point, viewing it as a new inequality in the
polar cone a single DD algorithm update step [14] (proc.
DDiteration [16]), and any new inequalities thus introduced
are marked as non-terminal. Then a new non-terminal facet is
selected and the process is repeated until all of the facets are
labelled as terminal, at which point the inner bound has been
proven equal to proj,P.

IV. SYMMETRY EXPLOITING CHM

In some polyhedral projection problems, including the moti-
vating problem of outer bounding network coding rate regions,
groups of symmetries of both the polyhedron to be projected
and of its projection are known prior to the projection cal-
culation. Knowledge of these symmetry groups can enable
important complexity and memory reduction enhancements
to polyhedral projection algorithms such as CHM. In this
section we will detail how to achieve these improvements
by describing a symmetry exploiting CHM. In keeping with
the ordinary CHM algorithm, we will begin by assuming
that we must project a polytope P to proj,P. Additionally,
we also have groups G,,G of known affine symmetries of
P, proj, (P), respectively, that are possibly subgroups of the
full ASGs of these sets.

Before we describe symmetry exploiting CHM and detail the
enhancements the symmetry knowledge enables, we define
some terminology related to the action of ASGs on sets of



vertices and facets of a polytope. The terminology that follows
is described for an arbitrary polytope P whose ASG (or a
subgroup of it G) is known. Let V" and H be the set of vertices
and facets respectively of P. For an affine symmetry g € G
and a vertex v of P denote by v9 to be the vertex to which v
maps to under action of g and let v&,| the orbit of v under G,
be the set of all vertices to which v can map to under action of
G. v© contains all vertices that are G-equivalent to v. The set
of all orbits in )V under action of G forms a partition of VV and
is denoted as Oy . Since each facet is simply the convex hull of
a collection of vertices, the action of the ASG can be extended
to H i.e. we define the orbit of a facet h € H denoted as h®
and Og to be set of all orbits of facets. The transversal 7~
of a set of orbits O is a set containing one representative per
orbit in O, and transversals of Oy of Oy are denoted as Ty
and Ty respectively. By storing transversals of the inequality
and vertex orbit sets, we can substantially reduce the space
required for working with highly symmetric polyhedra.

The next few subsections outline how symmetry exploiting
CHM works, while additionally describing the each of the
complexity improvements that the modifications enable.

A. Reducing the Number of LPs Solved

Just as in CHM, symmetry exploiting CHM (symCHM) builds
a sequence of progressively better inner bounds to proj,(P).
However, in symCHM, each inner bound obtained is selected
to be symmetric under the action of G, and the set of
inequalities and extreme rays in its DD pair is represented
exclusively by transversals Tz, Ty. The transversal Ty of the
facets of the inner bound carries with it an indicator variable
indicating if it is terminal or non-terminal. At an intermediate
step in the algorithm, a non-terminal facet cTx > bis selected
from the current inner bound’s facet transversal 7. Just as
in CHM, the linear program minyep[cT,ngk]y is solved,
and if the result is b, the facet is marked as terminal. If the
result is not b, the projection of the extreme point attaining
the minimum, proj, arg minyep[c?, 0]y, is added to the
transversal 7Ty. This act of adding this single extreme point
v to the inner bound’s vertex transversal has the same effect
as having added the entire orbit v to the full list of extreme
points in CHM. In ordinary CHM, to add each of these extreme
points, |[v| linear programs would have had to be solved to
obtain these extreme points, but in symCHM, only one LP is
required to obtain all of them.

B. Reducing the Number & Size of Double Descriptions Steps

When the new extreme point v is added to the transversal
Tv, the transversal of the inequalities 7z must be updated
(proc. symupdatehull [16]) to reflect the new inequalities
that the addition of the extreme points v¥ to the symmetric
inner bound creates (we call this new polytope the symmetric
improvement). In ordinary CHM, this would have been done
through of |v| steps of the DD method applied to the
complete inequality description of the symmetric inner bound.
However, based on Lemma 1, which is the same insight
from which the incidence decomposition method [15] for
representation conversion of symmetric polyhedra is derived,
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Figure 3: Comparison of number of LPs solved in chm
vs symchm for computing T for non-isomorphic I-DSC
instances with NSG of order 6. d is the dimension of LP
solved. In this instance, every LP solved with symchm is of
smaller dimension than those solved in ordinary chm.

we can often utilize far fewer DD steps (proc. symDD [16])
to obtain the new facets that must be added to the transversal.
Lemma 1. Let ’Plgé) be an inner bound on proj.(P) whose
ASG has Gy, as a subgroup, and let v be a new vertex of a
symmetric improvement ”PIEZ'H). If, in ”P,EZH), {f1,---, [t} is
the set of facets incident to v then, {f{,..., f{} is the set of
facets incident to v9.

Lemma 1 ensures that as long as we calculate the facets
of P,g“l) incident to v correctly, and include any of these
facets that are G-inequivalent into the new transversal 7y after
removing those non-terminal inequalities that the new extreme
points violate, the new facet transversal will reflect all of the
G-inequivalent facets of Pégﬂ). The key issue in calculating
the facets incident to v in P,EZH) correctly is that there may
be some vertices in v& \ {v} that are adjacent to v. To check
to see if this is the case, and if so, which ones, passing to the
homogenized polar C = homog(P})°, we can determine the
set A= {z € v®\{v}|mingec, [l z"]x <0} where

M

wevG\{z,v}

(see proc. repDD [16]). Next the rays of Cy= = CN{[1 vT]x =
0} are determined through an ordinary DD step adding
{[1 vT]x > 0} to C. These rays are further refined by adding
the inequalities {[1 w’]x > 0} for each w € A if any, through
| A| further DD steps. The new inequality transversal of P,g“l)
is created by removing any G-equivalent inequalities from
’Pﬁ’s removed (as rays in the homogenized polar) in these
|A| + 1 DD steps, and by adding the representatives of the
new rays introduced at the end of these |.A| + 1 DD steps.

The consideration of symmetry in this step of updating the
inequality description of the inner bound just described both
reduced the number of DD steps required for CHM and their
size. Indeed, only |.A|+ 1 DD steps must be performed to find
the result of adding |v¥| new extreme points. Also, the size
of each these DD steps is substantially smaller, since the cone
Cy= is being dealt with in the |.A| latter DD rather than C.

Cv-nz =CN{[lv']x=0} {[1 wIx >0} 3



C. Reducing the Dimension of the LPs over P

As explained previously, symmetry exploiting CHM cre-
ates its successively improving symmetric inner bounds to
proj,(P) by solving linear programs over P of the form
mingeplc’, 0] ,Jy. It is thus of interest to learn how to
exploit the ASG of P to reduce the complexity of solving these
linear programs. It is known that symmetry can substantially
simplify linear programs through dimensional reduction [18].
A key consideration in this complexity reduction is
whether or not the symmetries of the constraint set P
are shared with the cost vector, which in the instance
of CHM & symCHM is always of the form [c,04—f]-
As such, let G, be the subgroup of the known ASG
subgroup G, that leaves the cost invariant, i.e. Goc =
{[b,A] € G, |[cT0]_,](A — 1)) = O, [cT0]_,]b=0}.
The dimensionality reduction is achieved by observing that
it suffices to consider in the optimization only the part of P
that is fixed under the action of G, .. Bearing this in mind,
define the fixed space (which is a subspace of R?),

Fix(Goc) = {y e R4 |Ay +b =1y, V[b,A] € Go,c} Y
The key result is that

min 70l ]y %)

min[cTog_k}y =
YEPNFIX(Go.c)

yeP
Whenever the symmetry group is rich enough so that |G, c| >
1, the LP on the right of (5) is of lower dimension than the
original, and hence it is desirable to solve the LP over P by
instead solving the linear program over P N Fix(Gy.c). By
exploiting this dimensionality reduction whenever available,
symCHM can further reduce complexity relative to CHM.

D. Example: Application to IDSC Rate Regions

Symmetry exploiting CHM can be utilized to calculate the
projection of the Shannon or LP outer bound to the rate region
of the IDSC instances in Fig. 1. Each of these instances have
a NSG of order 6, which, as discussed in §II-C, yields a
symmetry group of the same order for both the polyhedral cone
to project, and the result of the projection when calculating the
LP outer bound. Fig. 3 demonstrates the substantial reduction
in computation afforded by exploiting these symmetries in the
projection: for each of these networks, substantially fewer LPs
are solved by symCHM than CHM, and those LPs that are
solved are all of substantially lower dimension.

V. CONCLUSIONS AND FUTURE WORK
This paper showed how to utilize the NSG to reduce the com-
plexity of calculating polyhedral bounds on the network cod-
ing rate regions. To do this, a polytope projection algorithm,
symCHM that can exploit known symmetry groups G,, G of
both the original polytope and its projection while building
progressively better symmetric inner bounds to the projection
was presented. This algorithm improved upon ordinary CHM
algorithm in several ways. First of all, a substantial reduction
in the amount of memory to represent the polyhedra was
enabled by only storing one representative from each of the
equivalence classes, under symmetry, of the inequalities or

extreme rays under the action of the group. Second of all,
the number of LPs to calculate the projection was drastically
reduced by acting on every new extreme point by G, keeping
the inner bound symmetric at every stage, and, when labeling a
facet of the projection as terminal (and hence correctly shared
with the projection), labeling all of its G-equivalent other
facets as terminal. Third of all, when a new extreme point
(and hence all of its G equivalent forms) has been added to
the inner bound, the action of GG was utilized to reduce the
complexity of updating the inequality description of the inner
bound. Finally, any symmetries in G, that are shared with
the cost vector in any LPs solved over it were utilized to
reduce the dimension of the LP to solve. We then showed
how to transform the network coding rate region problem into
a form that can utilize this new projection algorithm. Since
the polyhedral projection algorithm presented can exploit a
supergroup to the NSG, the ASG, future work will determine
a larger ASG subgroup of MSNC rate regions than the NSG.
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