Solving Rota's Conjecture*

Jayant Apte
ASPITRG

Outline

• Background
• What is Rota's conjecture?
• Graph Minors and WQO theorem for graphs
• Graph minors Structure theorem
Outline

- Background
- What is Rota's conjecture?
- Graph Minors and WQO theorem for graphs
- Graph minors Structure theorem
Matroid

- A matroid consists of a pair E, \mathcal{I} where E is a finite set and \mathcal{I} is a collection of subsets of E
- E is called the ground set
- Subsets in \mathcal{I} are called independent sets
- (E, \mathcal{I}) obey certain axioms:

 I1 $\emptyset \in \mathcal{I}$

 I2 Subsets of independent sets are independent

 I3 For each $X \subseteq E$, the maximal independent sets of X have the same size
Cryptomorphic axiom systems

- \((E, \mathcal{B})\): where \(\mathcal{B}\) is collection of all maximal independent sets of \(E\)

- \((E, r)\): \(r : 2^E \rightarrow \mathbb{Z}_{\geq 0}\) is called the rank function

- These generalize the idea of bases of vector space and linear rank
Column matroid

- Let A be a matrix over field \mathbb{F}
- Let E be the set of column indices of A
- Let \mathcal{I} be the collection of subsets of E that index linearly independent sets of columns
- The column matroid of A, denoted as $M(A)$ is (E, \mathcal{I})
F-representability

- A matroid is called F-representable if it is column matroid of some matrix over F

- **Conjecture** The proportion of n element matroids that are representable is vanishingly small as $n \to \infty$
Whitney's Problem(s)

Are following problems *decidable*?*

(P1) Is the given matroid representable over *any* field?

YES!

(P2) Is the given matroid representable over *given finite field*?

Rota's Conjecture!

A decision problem is decidable if there exists a finite terminating algorithm to solve it
Whitney's Problem(s)

Are following problems *decidable*?

(P1) Is the given matroid representable over *any* field?

(P2) Is the given matroid representable over *given finite field*?

A decision problem is decidable if there exists a finite terminating algorithm to solve it
Whitney's Problem(s)

Are following problems *decidable*?

(P1) Is the given matroid representable over *any* field?

 YES!

(P2) Is the given matroid representable over *given finite field*?

 Rota's Conjecture!

* A decision problem is decidable if there exists a finite terminating algorithm to solve it.
Matroid Duality

- *Dual* of a matroid M is a matroid denoted as M^* whose bases are complements of those of M

- **Theorem** A matroid M is \mathbb{F}-representable if and only if M^* is \mathbb{F}-representable
Deletion and Contraction

- Let C and D be sets of elements in a matroid $M = (E, \mathcal{I})$

- The matroid obtained by deleting D is defined as $(E - D, \{I \subseteq E - D : I \in \mathcal{I}\})$

- *Contraction* is dual operation of deletion

- $(M/C) = (M^\star \setminus C)^\star$
Minors

- Minors of a matroid M are matroids of type $M \setminus D/C$
- A minor is called *proper* if $D \cup C$ is nonempty
- The class of \mathbb{F}-representable matroids is closed under deletion and duality
- If a matroid is \mathbb{F}-representable, so are all its minors
- Hence the class of \mathbb{F}-representable matroids is closed under taking minors
Outline

● Background

● What is Rota's conjecture?

● Graph Minors and WQO theorem for graphs

● Graph minors Structure theorem
Excluded Minors

- Naturally we start look for matroids that are not \mathbb{F}-representable but all their proper minors are.

- We call these excluded minors.

- Conjecture (Rota): For each finite field \mathbb{F}, there are, up to isomorphism, only finitely many excluded minors for the class of \mathbb{F}-representable matroids.
Excluded Minors

• Naturally we start look for matroids that are not \mathcal{F}-representable but all their proper minors are

• We call these excluded minors

• Conjecture (Rota): For each finite field \mathcal{F}, there are, up to isomorphism, only finitely many excluded minors for the class of \mathcal{F}-representable matroids
Excluded Minors

- Naturally we start look for matroids that are not \mathbb{F}-representable but all their proper minors are.

- We call these excluded minors.

- **Conjecture (Rota):** For each finite field \mathbb{F}, there are, up to isomorphism, **only finitely many** excluded minors for the class of \mathbb{F}-representable matroids.

- (P2) is decidable if this is true.
Outline

• Background
• What is Rota's conjecture?
• Graph Minors and WQO theorem for graphs
• Graph minors Structure theorem
Graph Minors

- A *minor* of a graph G is a graph that is obtained from a subgraph of G by *contracting* some edges.
Characterization of planar graphs

- Planar graphs are graphs that can be embedded in a plane i.e. they can be drawn in such a way that no edges cross each other

- Planar graphs are closed under taking minors

- Kuratowski’s Theorem: A graph is not planar iff it has a minor isomorphic to $K_{3,3}$ or K_5

 \begin{footnotesize}
 \text{(K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271283.)}
 \end{footnotesize}
Generalized Kuratowski Theorem

- Robertson and Seymour generalized Kuratowski’s theorem from plane to arbitrary surfaces.

Theorem: For any given surface, there are only finitely many excluded minors for the class of graphs that embed in the surface.

A partial order on set of non-isomorphic graphs

- Let \mathcal{G} be set of all non-isomorphic finite undirected graphs

- If G can be obtained from H by taking minor, we say $G \leq H$

- '\leq' is a partial order on \mathcal{G} since it is:

 P1 Reflexive
 Every graph is minor of itself

 P2 Transitive
 Every minor of G is itself a minor of G

 P3 Antisymmetric
 If G and H are minors of each other, then they must be isomorphic
A quasi-order on set of all graphs

- Let \mathcal{G} be set of all finite undirected graphs
- If G can be obtained from H by taking minor, we say $G \preceq H$
- \preceq is quasi-order on \mathcal{G} since it is:
 - P1 Reflexive
 Every graph is minor of itself
 - P2 Transitive
 Every minor of G is itself a minor of G
Well-founded quasi order

- A quasi order R on X is Well-founded if

WQO1 There are no infinite descending chains
 (infinite sequences of type $x_1 > x_2 > x_3, \ldots, x_i \in X$)

WQO2 There are no infinite antichains
 (infinite subsets with pairwise incomparable elements
 $A \subseteq X$ s.t. neither $x_i \leq x_j$ nor $x_j \leq x_i$, $\forall x_i, x_j \in A$)

- Set of all graphs:

WQO1 is true since starting with a finite graph and deleting
 /contracting edges must end at empty graph

WQO2 the non-trivial part
Why is WQO so important?

A2 In any infinite set of graphs, there exists a pair x, y that is comparable under minor relation \leq.

A1 No infinite antichains.

A3 Let S be an infinite subset of \mathcal{G}, and M be the minor minimal subset of S i.e. $\forall x \in M$ if $y \leq x \Rightarrow y \notin S$; then M is finite.
Why is WQO so important?

A1 No infinite antichains

A2 In any infinite set of graphs, there exists a pair x, y that is comparable under the minor relation \leq.

A3 Let S be an infinite subset of G and M be the minor minimal subset of S i.e. $\forall x \in M$ if $y \leq x \Rightarrow y \notin S$, then M is finite.

M is an antichain for any S. If not, there exists $x \in M$ such that $y \leq x$ and $y \in M$, thus contradicting minor minimality of x.
Why is WQO so important?

In any infinite set of graphs \(\exists \) a pair \(x, y \) that is comparable under minor relation \(\leq \)

A1

No infinite antichains

A3

Let \(S \) be an infinite subset of \(\mathcal{G} \) and \(M \) be the minor minimal subset of \(S \) i.e. \(\forall x \in M \) if \(y \leq x \) \(\Rightarrow y \notin S \), Then \(M \) is finite

Obvious
Why is WQO so important?

A1 No infinite antichains

A2 In any infinite set of graphs \(\exists \) a pair \(x, y \) that is comparable under minor relation \(\leq \)

Upwards: Every element in \(S \setminus M \) is comparable to at least one element of \(M \)

Downwards: If \(M \) was to be infinite, \(y \in M \) s.t. \(y \leq x \), i.e. \(x \in M \) has a minor that is also in \(M \) \(\Rightarrow \iff \)

A3 Let \(S \) be an infinite subset of \(\mathcal{G} \) and \(M \) be the minor minimal subset of \(S \) i.e. \(\forall x \in M \) if \(y \leq x \) \(\Rightarrow y \notin S \), Then \(M \) is finite
Why is WQO so important?

A1 No infinite antichains

A2 In any infinite set of graphs, \(\exists \) a pair \(x, y \) that is comparable under minor relation \(\leq \)

A3 Let \(S \) be an infinite subset of \(\mathcal{G} \) and \(M \) be the minor minimal subset of \(S \) i.e. \(\forall x \in M \) if \(y \leq x \Rightarrow y \notin S \), Then \(M \) is finite
Why is WQO so important?

A1 No infinite antichains

A2 In any infinite set of graphs \(\exists \) a pair \(x, y \) that is comparable under minor relation \(\leq \)

A3 Let \(S \) be an infinite subset of \(\mathcal{G} \) and \(M \) be the minor minimal subset of \(S \) i.e. \(\forall x \in M \) if \(y \leq x \Rightarrow y \notin S \), Then \(M \) is finite
WQO and minor closed families of graphs

F: an (infinite) minor closed family

F^c

M: Minor minimal subset of F^c
WQO and minor closed families of graphs

F: an (infinite) minor closed family

F^c

Forbidden minors of F

This is finite!
A further generalization: WQO Theorem

Theorem: Each minor-closed class of graphs has only finitely many excluded minors

Alternatively,

- In each infinite set of graphs, there are two graphs, one is isomorphic to a minor of the other
- There are countably many distinct minor closed classes of graphs
Excluded minors for planarity

\[K_5 \]

\[K_{3,3} \]
Example: Peterson graph
Example: Peterson graph Not Planar
Other minor closed families with forbidden minor characterizations

Apex Graphs:
Graphs that can be made planar by removal of a single vertex
Finite (unknown) excluded minors
Other minor closed families with forbidden minor characterizations

Graph Unions* of Cactus graphs:
Graph unions of graphs in which any two simple cycles contain at most 1 common vertex
One Excluded minor: Dimond graph

* A binary operation corresponding to disjoint union of vertex sets and edge sets
Other minor closed families with forbidden minor characterizations

Pseudoforests: Graphs having at most one cycle in every connected component

Two Excluded minors:
1) Dimond graph 2) Butterfly graph

* A sub-class of unions of cactus graphs
Outline

- Background
- What is Rota's conjecture?
- Graph Minors and WQO theorem for graphs
- Graph minors Structure theorem
Graph Minors Structure Theorem

- The set of excluded minors M form an antichain under the well quasi order
- Let $F = (H_1, H_2, H_3, \ldots)$
- A graph is said to be H_1-free if has no minor isomorphic to H_1
- (H_2, H_3, \ldots) must be H_1-free (having no minor isomorphic to H_1)
- Let $EX(H_1)$ be the set of all graphs not having a minor isomorphic to H_1
- If H_1 does not embed into a surface S, graphs that embed into surface S must be in $EX(H_1)$. Call this set P.
- Graph minors structure theorem provides a means to construct graphs in $EX(H_1)$ from P
Part-2 Outline

- Graphs to matroids: Forbidden minor characterization of graphic matroids
- Matroid WQO theorem
- Projectively Inequivalent Representations
- Bifurcation
- Representability under circuit hyperplane relaxation
Note: forbidden minor characterization perfect graphs

• Minors (in the sense we discussed so far) yield a relation on set of all graphs

• So do induced subgraphs

• Perfect graphs are characterized by forbidden induced minors

• Forbidden minors*: Odd holes (simple cycles of length not less than 5) and their complements

Chudnovsky, Maria; Cornuéjols, Gérard; Liu, Xinming; Seymour, Paul; Vušković Kristina (2005). "Recognizing Berge graphs". Combinatorica 25 (2): 143–186
Note: WQO for Digraphs?

• What relation one should use?
 – Edge contraction is absurd
Note: WQO for Digraphs?

- What relation one should use?
 - Edge contraction is absurd
Note: WQO for Digraphs?

- What relation one should use?
 - Edge contraction is absurd
Note: WQO for Digraphs?

- What relation one should use?
 - Edge contraction is absurd
Note: WQO for Digraphs?

- What relation one should use?
 - Edge contraction is absurd
 - WQO fails
Note: WQO for Digraphs?

• How to deal with this problem?
• Consider a subclass: Semi-complete Tournaments*
• Various minor relations
 – Immersion
 – Strongly connected subgraph contraction

*A directed graph obtained from a complete undirected graph by orienting edges
Note: WQO for Digraphs?

- How to deal with this problem?
- Consider a subclass: Semi-complete Tournaments
- Various minor relations
 - Immersion: forms WQO on semi-complete tournaments*
 - Strongly connected subgraph contraction

Note: WQO for Digraphs?

- How to deal with this problem?
- Consider a subclass: Semi-complete Tournaments
- Various minor relations
 - Immersion: forms a WQO on semi-complete tournaments*
 - Strongly connected subgraph contraction: forms a WQO on semi-complete tournaments*

Part-2 Outline

- Graphs to matroids: Forbidden minor characterization of graphic matroids
- Matroid WQO theorem
- Projectively Inequivalent Representations
- Bifurcation
- Representability under circuit hyperplane relaxation
Graphic Matroids

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{c} & \quad \text{d} & \quad \text{e} \\
1 & \quad \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \end{bmatrix} \\
2 & \quad \begin{bmatrix} -1 & 0 & 1 & -1 & 0 \end{bmatrix} \\
3 & \quad \begin{bmatrix} 0 & 1 & -1 & 0 & -1 \end{bmatrix} \\
4 & \quad \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}
\end{align*}
\]
Graphic Matroids

\begin{align*}
\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}
\end{align*}

\begin{align*}
\begin{array}{ccccccc}
& a & b & c & d & e \\
1 & 1 & -1 & 0 & 0 & 0 & 0 \\
2 & -1 & 0 & 1 & -1 & 0 & \\
3 & 0 & 1 & -1 & 0 & -1 & \\
4 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}
\end{align*}
Graphic Matroids

This is both binary and ternary representation.

\[
\begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
Graphic Matroids

Theorem (Seymour) A matroid is representable over all fields iff it is representable over both $GF(2)$ and $GF(3)$

Theorem Graphic matroids are representable over all fields
Characterization of graphic matroids

Graphic matroids are a minor closed family

Theorem (Whitney): A graph G is planar iff $M(G)^*$ is graphic
Characterization of graphic matroids

Graphic matroids are a minor closed family
Theorem (Whitney): A graph G is planar iff $M(G)^*$ is graphic

Theorem: A matroid is graphic if it is binary

Theorem: A matroid is graphic if it is ternary
Characterization of graphic matroids

Graphic matroids are a minor closed family

Theorem (Whitney): A graph G is planar iff $M(G)^*$ is graphic

Exclude $M(K_{3,3})^*$, $M(K_5)^*$!

Theorem: A matroid is graphic if it is binary

Exclude $U_{2,4}$!

Theorem: A matroid is graphic if it is ternary

Exclude F_7 and F_7^*!

Excluding $U_{2,4}$ takes care of $U_{2,5}$ and $U_{3,5}$
Characterization of graphic matroids

Graphic matroids are a minor closed family

Theorem (Whitney): A graph G is planar iff $M(G)^*$ is graphic

Theorem (Tutte): The excluded minors for the class of graphic matroids are $U_{2,4}, F_7, (F_7)^*, M(K_{3,3})^*, M(K_5)^*$

Part-2 Outline

- Graphs to matroids: Forbidden minor characterization of graphic matroids
- **Matroid WQO theorem**
- Projectively Inequivalent Representations
- Bifurcation
- Representability under circuit hyperplane relaxation
Matroid WQO and rota's conjecture

- A WQO theorem for set of all finite matroids would imply Rota's conjecture is True
Matroid WQO and rota's conjecture

- A WQO theorem for set of all finite matroids would imply Rota's conjecture is True
- Unfortunately WQO theorem doesn't hold for all matroids
Matroid WQO

Theorem (Matroid WQO) For each finite field \mathbb{F} and each minor closed class of \mathbb{F}-representable matroids, there are only finitely many \mathbb{F}-representable excluded minors.
Matroid WQO

Theorem (Matroid WQO) For each finite field \mathbb{F} and each minor closed class of \mathbb{F}-representable matroids, there are only finitely many \mathbb{F}-representable excluded minors

Matroid WQO does not say anything about Rota’s conjecture
Part-2 Outline

- Graphs to matroids: Forbidden minor characterization of graphic matroids
- Matroid WQO theorem
- **Projectively Inequivalent Representations**
- Bifurcation
- Representability under circuit hyperplane relaxation
Projective equivalence of matroid representations

- Two matrices A and B are said to be *projectively equivalent* if A can be obtained from B by:
 - Elementary row operations
 - Column scaling
Projective equivalence of matroid representations

Projectively inequivalent representations of 3-whirl over GF(5)

\[
A = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 \\
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 3 \\
\end{bmatrix}
\]