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Abstract—A new computational technique is presented for
determining rate regions for coded networks. The technique
directly manipulates the extreme ray representation of inner and
outer bounds for the region of entropic vectors. We use new
inner bounds on region of entropic vectors based on conic hull
of ranks of representable matroids. In particular, the extreme-ray
representations of these inner bounds are obtained via matroid
enumeration and minor exclusion. This is followed by a novel
use of iterations of the double description method to obtain
the desired rate regions. Applications in multilevel diversity
coding systems (MDCS) are discussed as an example. The special
structure of the problem that makes this technique inherently
fast along with being scalable is also discussed. Our results
demonstrate that for each of the 31 2-level 3-encoder and the
69 3-level 3-encoder MDCS configurations, if scalar linear codes
(over any field) suffice to achieve the rate region, then in fact
binary scalar linear codes suffice. For the 31 2-level 3-encoder
cases where scalar codes are insufficient we demonstrate that
vector linear codes suffice and provide some explicit constructions
of these codes.

I. INTRODUCTION

The rate region of multilevel diversity coding systems
(MDCS) [13], [6], [14] and coded networks [15] can be
expressed in terms of the closure of the region of entropic
vectors [15]. Since the closure of the region of entropic vectors
f‘j\, is unknown for N > 4, this expression is evaluated by
substituting inner and outer bounds for I'%;, thus yielding inner
and outer bounds on the rate regions. When these inner and
outer bounds for the rate region coincide, the rate region of that
network has been determined. This paper makes use of inner
bounds based on conic hull of rank functions of representable
matroids, because representations of matroids provide optimal
codes to achieve the whole rate region as well.

In previous work on connections between matroids and
network codes [1], all source entropies are the same and all
edge capacities are the same, and hence the capacity of a
network is thus a scalar. In contrast, in this paper, the object
under study is rate regions, and hence source entropies and
edge capacities are allowed to be unequal. Further, while we
generalize the mapping in [1] between networks and matroids,
to allow one random variable to be mapped to a subset, rather
than singleton, of ground set of a matroid. This allows more
versatile codes based on subspaces to be used and hence
provides a larger achievable rate region.

The primary contribution of this paper is a new compu-
tational technique to obtain the rate region of MDCS. The
method utilizes non-isomorphic matroid enumeration [10],

together with forbidden minor characterizations for binary
and ternary representability [12], to obtain extreme ray rep-
resentations of the cones generated by ¢) matroids, i) binary
representable matroids, and i) dimensions of subspace ar-
rangements in a manner that exploits symmetries. These inner
bounds for the region of entropic vectors are then intersected
with equalities and inequalities associated with the MDCS
problem under study. The extreme ray representation of the
intersection is obtained via a novel application of the dou-
ble description method [4] used in polyhedral representation
conversion.

The technique used in our previous work [9] to solve the
same problem works with the inequality representations of
bounds, and does not exploit the high degree of inherent
symmetry in the problem, and thus suffers from an un-
necessarily higher computational complexity. In contrast, the
technique discussed in this paper works with the extreme ray
representation of inner and outer bounds of I'%, allowing
symmetry to be exploited and the complexity to be reduced.

The new method allows us to improve upon the results
in our prior work [9]. We consider each of the 31 2-level
3-encoder and 69 3-level 3-encoder MDCS configurations.
We show that 25 (54) of the 31 (69) 2-level (3-level) rate
regions are achievable by scalar linear codes, in fact binary
linear codes suffice. We show that for each of the 6 of 31
2-level cases where scalar linear codes are insufficient that
vector linear codes are sufficient, and we provide explicit
constructions for some examples.

Further, Hau [6] showed superposition coding was insuffi-
cient to achieve the rate region for 12 of the 69 cases, but
did not provide an efficient coding scheme in 8 of these 12
cases. In fact, 5 of these 8 cases are in the list of 54 cases
for which we have shown binary codes suffice. That is, our
construction has produced binary coding constructions that are
strictly better than superposition coding for these cases.

The paper is organized as follows. §1I introduces bounds on
region of entropic vectors. §III defines the rate regions, and
§IV deals with the new procedure to compute them and why
it is efficient. In §V we show how to construct codes from the
bounds, while in §VI we review results obtained for specific
MDCS problems. §VII concludes the paper.

1. NEW BOUNDS ON [}

In this section, we discuss region of entropic vectors,
Shannon outer bound, new representable matroid inner bounds



and dimension functions of subspace arrangements.

A. Shannon outer bound TN on entropic vectors region 1:‘}‘\,

Let (X1,...,Xn) be a collection of N discrete random
variables with joint probability mass function px. To each
of the 2V — 1 non-empty subsets of the collection, X 4 :=
(X;li € A) with A C {1,..., N}, there is an associated joint
Shannon entropy H (X 4). Stacking these subset entropies for
different subsets into a 2V — 1 dimensional vector we form a
vector h that lies in R2" —1, and is said to be entropic. Letting
Pn denote the set of all such possible joint probability mass
functions px, we define I'}; := h(Py), the region of entropic
vectors, to be the image of Py under this function h(-). It is
known that the closure of the region of entropic vectors ['%
is a convex cone [15]. Viewed as a function of the subset
of variables selected, Shannon entropy is a non-decreasing
submodular set function, yielding the Shannon outer bound

ha<hg VACBHB
heup + henp < he +hp VC,D

While I'; =T and I'; = [3,T% € Ty forall N > 4[15],
it is known [3] that I'}; is not even polyhedral for N > 4.

FN::{heﬂ¥N1

B. Representable matroid inner bounds for T'%,

Definition 1. A matroid [12] on a ground set S of size |S| =
N can be defined via its rank function, which is a function
r:2% = {0,..., N} obeying for all A,B C S:

1) Cardinality: r(A) < |A];

2) Submodularity: (AU B) +r(AN B) < r(A) + r(B).

3) Monotonicity: if A C B C S then r(A) < r(B).

Observe that 2) and 3) are the same set function require-
ments as those defining the Shannon outer bound I'y. We
denote the conic hull of all ranks of matroids with ground set
of N elements as I"y**. Partially owing to the large amount
of symmetry, and partially to simple combinatorial explosion,
the number of matroids grows rapidly with dimension. One
can remove a part of the explosion due to the symmetries by
working with lists of non-isomorphic matroid rank functions,
which have long been available for N < 8 and have recently
become available for N = 9 [10].

Representable matroids are the class of matroids whose rank
functions are in fact ranks of subsets of columns of a matrix.
In particular, a matroid M with ground set S of size |S| = N
and rank r(S) = k is representable over the finite field F, of
size ¢ if there exists a matrix A € ]F’; XN such that VB C S
r(B) = rank(A. ), the matrix rank of the columns of A
indexed by B. Let I'Y; be the conic hull of all rank functions
of matroid with N elements and representable in IF,. This
provides an inner bound I‘?\, C T%,, because any extremal
rank function r of I'%; is by definition representable and hence
is associated with a matrix representation A € FF*N  from
which we can create the random variables

(X1,...,Xn)=uA, u~UFL. (1)

whose elements are hg = r(A)logy ¢, VA C S. Hence, all
extreme rays of I'%; are entropic, and I'%; C T'%.

One can further generalize the relationship between rep-
resentable matroids and entropic vectors established by (1)
by partitioning S = {1,...,N} up into N’ disjoint sets,
Si,...,Sns and defining for n’ € {1,..., N’} the new vector
valued, random variables X/, = [X,,|n € S,/]. The associated
entropic vector will have entropies ha = (U, caSn ) logs g,
and is thus proportional to a projection of the original rank
vector r keeping only those elements corresponding to all
elements in a set in the partition appearing together. Thus,
such a projection of I'Y; forms an inner bound to I_‘jv,, which
we will refer to as a vector representable matroid inner bound.
The union over all such projections and field sizes for vector
representable matroid inner bounds is the conic hull of the set
of ranks of subspaces, which will be discussed next.

C. Dimension function of subspace arrangements

Consider a collection of N vector subspaces V =
(Vi,...,Vn) of a finite dimensional vector space, and define
the set function d : 2V — N, where d(A) = dim (3,c 4 Vi)
for each A C [N] is the dimension of the vector space
generated by the union of subspaces indexed by A. For any
collection of subspaces V, the function d is integer valued,
and obeys monotonicity and submodularity. Additionally, for
every subspace dimension function d, there is an associated
entropic vector. Indeed, one can place the vectors forming a
basis for each V;, over all 7, side by side into a matrix A, which
when utilized in (1), will yield random subvectors having the
desired entropies, as discussed at the end of §1I-B. Thus, the
conic hull of dimensions of subspace arrangements forms an
inner bound on I'},, we denote it by I'F*.

Integrality, monotonicity, and submodularity are necessary
but insufficient for for a given set function d : 2¥ — N, to be
dimension function of subspace arrangements. That is, there
exist additional inequalities that are necessary to describe the
conic hull of all possible subspace dimension set functions.
As discussed in [5], Ingleton’s inequality [7] together with the
Shannon outer bound I'y, completely characterizes T'}P*“.

For N = 5 subspaces [2] found 24 new inequalities in
addition to the Ingleton inequalities that hold, and prove this
set is irreducible and complete in that all inequalities are
necessary and no additional non-redundant inequalities exist.
For N > 6, [2], [8] there are new inequalities from N — 1 to
N, and Iy remains unknown.

III. MDCS CODES AND THEIR RATE REGIONS

Here, we review the definition and structure for rate regions
for MDCS style networks. There are K independent sources
X1.x = (Xi1,...,Xk) where source k has normalized en-

tropy in F,, that is Hy(Xy) = > —pslog,(p.) where X}
TEAX)
is the support for X. Each source kX  1s in fact a sequence

of random variables {X},¢ =1,2,...} iid. in ¢, so that X,
is a representative random variable with this distribution.

All sources are made available to each of a collection of
encoders indexed by the set E, the outputs of which are de-
scription/message variables U,, e € E. The message variables
are mapped to a collection of decoders index by the set D,



where a decoder must losslessly (in the typical Shannon sense)
recover a subset of source variables X 34y, d € D, 5(d) C [K].

Let R = (Ry,.. .,R‘E|) S ]Rf be the rate vector for the
encoders, where each R, is also calculated in Fy. An (n,R)
block code in I, for each encoder e is defined by

n K
for [TTI A = {01, (¢ ]} e B (@
i=1k=1
The blocked encoder outputs are indicated by U, = f.(X %)
for e € E. Decoder d has an available subset of the de-
scriptions £; C E, and must asymptotically losslessly recover
source variables Xg(q):

ga: [T€0 1= T A deD. ©

e€&y 1=1kep(d

A rate vector R is achievable if there ex(is)ts, for a sufficiently
large n, an (n, R) block code in F, such that the coding rate
for each encoder R, < Re,e € E and P(ga(fe(Xim),e €
&) # Xé:&')) — 0 as n — oo. The rate region R is the
collection of all achievable rate vectors.

An outer bound on coding rate region R for MDCS is

Rout = Ex(projp,,, . (Tx N Lo123)) “4)

and a similar expression for an inner bound on the rate region
also exists [16], [15]. Here, L1023 = ﬂfzoﬁi and £; denote
various linear constraints that are derived from the network,
PIOJhy cim (B) is the projection of set B on coordinates
(hy,le € [E]]) corresponding to encoder output variables, and
Ex(B) =1{h ¢ RiN_l :h > h' for some h' € B}

For N > 4, the exact region of entropic vectors f*N is
unknown, hence, one must replace f‘*N in (4) with an outer
bound or inner bound to obtain a corresponding outer or inner
bound on the rate region. When these bounds match, they are
both equal to the fundamental rate region. Otherwise, the exact
rate region lies between inner and outer bound.

IV. NEW COMPUTATIONAL APPROACH

The bounds for f*N discussed in §II are polyhedral. Hence,
if we replace f*N in (4) by these bounds, rate region cal-
culations reduce to the generic problem of applying linear
constraints to a polyhedron and then projecting it down to
a subset of dimensions. The same reduction can be used to
obtain rate regions for network coding in directed acyclic
networks [15], as well as other coding problems [16].

Our computational approach is inspired by the double
description (DD) method of polyhedral representation con-
version. Given the inequality representation of polyhedral
cone, the DD method incrementally constructs its extreme
ray representation by applying each inequality constraints one
at a time. As we shall see in this and next section we can
apply constraints by using the framework for an iteration of
the double description method.

A. An Iteration of Double Description Method

The DD Method, first described in [11], enumerates all
extreme rays of a pointed polyhedral cone with the origin as its
only extreme point. As all polyhedra can be converted to cones

>>m

Figure 1. Depiction of special structure of the problem: (top row) Insertion of
a generic equality constraint(green) using corollary 5 where rays A,E and C,D
are combined to compute new rays AE and CD and (bottom row) Insertion
of £; in any polyhedral cone P C I'y obviating any computation.

through homogenization, it follows that conic conversion con-
stitutes the general case [17]. Fukuda et al. discuss efficient
implementations of DD in [4]. We give some definitions.

Definition 2. A polyhedral cone P has dual representations
as 7) an intersection of halfspaces intersecting the origin {x €
R? : Az > 0} and ii) the conic hull of its extreme rays
{zx e RY: 2z = GX: >0} Ais called the representation
matrix, while G is called the generator matrix.

Definition 3. A pair (A, G) is said to be a double description
pair (DD pair) if the relationship: Az > 0 iff x = G for
some A > 0 holds. Here A has d columns and G has d rows.

Lemma 4 below is at the core of DD. Given a DD pair
(A,G) corresponding to a polyhedral cone P C RY, it
describes how to obtain generator matrix G’ corresponding

to polyhedral cone P’ € R? defined by representation matrix
A

(aT>' We denote by HT,H® and H~ the partition of R¢
produced by insertion of a new inequality a”x > 0 as defined
in [4]. The rays in G can then be partitioned as J*, Jy and
J~, respectively, based on their membership in one of the
three partitions above.

Lemma 4. The Double Description Lemma: Let (A, G) be
a DD pair corresponding to cone P C R% and aTx > 0
be a halfspace in RY. Then the pair (A’',G') is a DD pair,
where G' is the d x |.J'| matrix with column vectors r;(j € J')
defined by J' = JtU JOU(J T xJ7),and rj; = (aTr;)rj—
(aTr;)r; for each (j,j') € J* x J~.

We extend Lemma 4 for equality constraints as follows:

Corollary 5. If G is a d X n generator matrix for cone P
and a®x = b is a hyperplane then P N{a”x = b} is a cone
whose generator matrix G' is d x |J'| matrix with column
vectors v;(j € J') defined by J = J° U (J* x J7) and
rii = (aTr;)r; — (a¥r;)r; for each (j, ' Tx JT
33t = iITs 3T J,J") €I x J
It is clear from Lemma 4 (Corollary 5) that one does not

require knowledge of A to compute G’ from G when inserting
a new inequality (equality) constraint.

B. A Note on Complexity and structure of the problem

In terms of time complexity, in general, the computation of
r;;» while applying each constraint can be onerous. Starting
with a d x m matrix G, we need O(m) time for testing each



ray’s membership in J°, J* or J~. Then we need O(m?)
time to compute all r;;,. Hence the overall time complexity
for applying constraints is O(m?) time. This bound holds for
equality as well as inequality constraints.

However, it should be noted that most of the equality
constraints introduced when calculating network rate regions,
are already sign definite.

Theorem 6. Let a polyhedral cone P C ', VL € L;,i =
0,1,2,3, J- =0 in PN L.

Proof: Note that these constraints are conditional mutual
information (entropies) equal to zero. If J~ # (), there exists
some point p € P such that L(p) < 0. However, p € Ty, so
it satisfies Shannon inequalities which are non-negativity of
conditional mutual information (entropy). Contradiction. H

Thus, the growth in computation and the introduction of
new extreme rays is avoided due to this sign definite structure,
as shown in Fig. 1. The time complexity of applying one
constraint in this case is hence O(m), allowing the proposed
method to execute quickly. Furthermore, this advantage is
independent of the size of the problem under consideration,
making the proposed technique inherently scalable.

The computational approach in [9] uses an inequality for
the region bounds. Though applying constraints to an in-
equality representation of a polyhedron takes constant time,
the subsequent Fourier Motzkin variable elimination utilized
in [9] suffers from doubly exponential time complexity. In
our experiments this complexity resulted in excessively long
running times for experiments with N > 6 variables. This
motivated us to find a more efficient way to compute the rate
region, especially for large V. One of the merits of working
with an extreme ray representation is that projection is easy:
one may merely delete the coordinates to be removed under
projection, then remove any resulting redundant projected rays.

C. Proposed computation approach

The proposed approach to obtain the scalar (binary) repre-
sentable matroid inner bounds for rate regions are as follows:

1) Start with a list of rank functions of non-isomorphic
matroids, exclude those containing a forbidden minor (e.g.,
for binary representable remove those having a Us 4 minor).
Add all permutations of the remaining non-isomorphic matroid
ranks to get a full list of all ranks for representable matroids
on a ground set size of V.

2) Use one iteration of DD method to apply topology con-
straints and rate constraints from the network graph.

3) Projection: drop all coordinates except those corresponding
to source and coding rate variables from each ray.

4) Remove any redundant rays (i.e., conic hull) to get an
extreme ray representation for the rate region. Additionally,
representation conversion is necessary if an inequality repre-
sentation of the rate region is desired.

V. CONSTRUCTING CODES FROM I'§; AND I'{yA°F

Regions built from representable matroids not only provide
inner bounds on I'%,, but also allow the determination of

linear network codes via their matrix representations. In this
section, we explain how any point in the rate region obtained
from the representable matroid inner bound can be achieved
with a linear code constructed from matrix representations of
representable matroids.

Let R, be the rate region obtained from I'%,. Note that
R, is a cone in dimension of [hx,, hy,,k € [K],e € E]. Let
Extr(P) be the set of representative vectors of the extreme
rays of polyhedral cone P. We have the following fundamental
theorem.

Theorem 7. Let R € R, there exists a T C Extr(I'%;) such
that R = Zr,;eT aiProthk,hUe,ke[K]yeeEri with a; > 0.

Proof: Follows from the the computation approach. W
Before we show the construction of code to achieve an
arbitrary point in the rate region, it is necessary to show that
a rank function of IF-representable matroid M is associated
with a linear network code in F,,.

Given a particular MDCS problem, we first define a
network-IF ;-matroid mapping, by loosening some conditions
in [1],to be f: X;.x U{U.,e € E} — &', which associates
each source variable and encoded variable with a collection of
elements forming one set in a partition S’ of a ground set S
of a IF,-representable matroid M, such that:

1.) f is a mapping from one element to one element in S’;
2) r(Ukey F(X)) = S0, r(£(XR)),

3.) r(f(In(v))) = r(f(In(v)) U f(Out(v))),Yvo € E U D,
due to the encoder and decoder functions. Here, In(v) is a
collection of input variables to v and Out(v) is a collection of
output variables from v.

If all of the elements in S’ are singletons, then f is an
one-to-one mapping to S, and the matrix representation of
M can be used as linear code in F, for this network, since
the mapping guarantees the network constraints are obeyed.
This coding solution is called a basic scalar solution. If S’
contains some elements that have cardinalities greater than 1,
the representation of M is interpreted as a collection of bases
of |S’| subspaces, which can also be used as a linear code and
this solution is called a basic vector solution.

The basic solutions are in fact (1, [r(f(Out(e))),e € E])
codes defined in the section III. In particular, there are
Yweir) T(f(Xk)) gary digits Xy~ o (rx,) (put @ to
position k if H(X},) = 0). There exists a representation C with
dimension (e "(F(X0))) % (X (£ (Xi)) + |ED)
associated with the rank function r of M, where C =
[HZkE[K] r(f(Xi)) (C/} and the identity matrix HZke[K] r(f(X1))
is mapped to the source digits and the rest C' is mapped
to coded messages such that U, = X(C’(:’UC),e € F,
where (C’(:’Ue) indicates the columns mapped to message U,
((C/(:,Ue) = (O)Zke[K] r(f(Xp))x1 if H(Ue) = O). C’ can be a
semi-simplified solution by deleting rows which are associated
with sources with zero entropy but keeping the column size
as |F|. In the following context, basic solutions are semi-
simplified.

Now let us consider a point R € R, associated



with source entropies Hy(Xy),k € [K]. Suppose R =
doreT a;Proj, o h, keKleeptin® = 0. where T C
Extr(I'%;),r; € T there exists an associated semi-simplified
basic scalar solution C; for the network.

Let H,(X}) ),k € [K] be the source entropies, R, ;,e €
E,;i =1,...,|T| be the rates associated with r;. According
to Theorem 7, H(X;) = Zm1 a;Hy(Xy,;) and R, =
STl R, 5, where Hy (X)) € {0,1} and R.,; € {0,1}
because they are from matroids.

The construction of a code to achieve R is as follows.

1) Find rational numbers &; = - i =1,...,|T]
then ﬁ(Xk) Zl 1 6 H (X ;) and R, Zml &; R, ; are
the approximation, which can be arbitrarily close, of source
entropies and rates, respectively;

2) Let L =LCM({n;}) be the block length;

3) Suppose L blocks of all K source variables XL are
losslessly converted to uniformly distributed g-ary digits by
some fix-length source code using a sufficiently large number
of outer blocks. We gather these g-ary digits formed by
individually compressing the onglnal source variables into a
row vector X, length(X) = sz 1 H(Xy).

4) Let t; = La; be the number of times we will use code
C;. For every time we use C[, the number of g-ary digits
encoded is equal to the number of rows in C, (note that C
is semi-simplified). So there exists a partition of X consisting
of Z@l t; elements in total and all #; elements mapped with
C} have the same cardinality which is the number of rows
in C,,Vi = 1,...,|T|. More specifically, we are drawing
tLH(X %,;) samples from X’s buffer for the t; repetitions of
the basic solution C;.

5) Let X' = XG (G is a shuffled identity matrix to relocate
the g-ary digits in X) be a rearrangement of X such that
the source digits are mapped in the same order as the basic
solutions in the constructed code C which repeats C; for 7,
times, Vi € {1,2,...,|7|} in the way as follows.

U = X’ x BlkDiag(C},...,C,,...,C. ...)) (5)
S~ N

~ .
~ oy,

t1 times %; times &,, times
where BlkDiag(-) is a block diagonalizing function.
6) Note that all C] have the same column size and the column
indices are mapped to e € E. Therefore, we can rearrange the
columns in C to group all columns containing C, 2 Uﬂ),i =
1,...,|T] to be an encoding function for e. That is, C =
oncatenatlon((C ) Ceony = C(17(6+|E\~[0:ELZ‘1 fi))y’ C
can be further simplified by deleting all-zero columns.

Indeed, we can see that the code constructed this way can
achieve the point R € R, by examining

171
Zt ;rank(C; (. v7,))

= Z fiRi,e
1=1
171

=LY &Ri.=LR..
i=1
Therefore, the actual rate per source variable is R, =

%{L) = Re ~ R., with arbitrarily small offset if the fraction

H,(U.) = rank( (Ceoy)

i Suppose H(X)=H(Y)=1

Ry

> H(X)
Ry+Ry > H(X)+H(Y)
Ri+Ry > H(X)+H(Y)
Suppose H(X)=1H(Y)=2 Ri+Ry > H(X)+H(Y)
Ry Source Vector: X YLy?y g (Ri+Re+ Ry > H(X)+2+H(Y))
T.
iii) U Us iV) Ry Suppose H(X) =1; H
pr

0 ] Source Vector: [X, Y7,
0

Ry > H(X)
Ryt Ry > H(X)+H{Y)
Ri+Ry > H(X)+H(Y)
Ri+Ry > H(X)+H(Y)
Ri+Ry+Ry > H(X)+2+H(Y)

Ry

Figure 2. i) Example MDCS network. ii) Rate region and corresponding
codes. iii) Scalar codes for inner bound. iv) No scalar code for outer bound.

approximations are arbitrarily close. If I'%; is used in obtaining
the rate region, C;,Vi = 1,...,|T| are basic scalar solution,
we call the constructed code a scalar representation solution.
Similarly, if T’V is used in obtaining the rate region, some
basic vector solutlons C;, some i = 1,...,|7| may be needed
in constructing the code C. We call such a code involving basic
vector solution(s) a vector representation solution.

Let’s consider a 2-level-3-encoder MDCS as an example
which is shown in Fig. 2. The outer R,y and inner bound
Rin on rate region obtained from Shannon outer bound and
binary inner bound are depicted in Fig. 2. Note that when
H(X) = H(Y), Rout = Rin, and an optimal code is provided
in Fig. 2.

However, Roye # Rin in general for this example, if
H(X) # H(Y). For H(X) = 1,H(Y) = 2 there is a gap
between the inner and outer bounds. For the inner bound, we
can find a scalar code solution. Fig. 2 shows a binary code to
achieve the inner bound extreme point R = (2,2, 1), which is
a conic combination of two basic solutions

0 1 1

For Rout, we know there does not exist scalar binary coding
solution for some extreme point. For example, as shown in
Fig. 2, there is no scalar solution for the outer bound extreme
point (2,3, 2). However, since we know the I';"*“° makes up
the gap and we know there must exist a solution to achieve
this point. Actually, we can find a binary vector representation
solution for this point. Note that we only need to group
two outcomes of source variables and encode them together.
Suppose we have source vector v = [ X7, Xo, i1, Y2, Yo, Y]
where the lower index indicates two outcomes in time while
upper index indicates the position in one outcome. One vector
representation coding solution is

U1U2U3 =v X Blleag((Ch(Cg) (6)

UIUMNUL = Y x [110), U2U2U2 = XY? x [ 110 }



which can also be expressed as a conic combination of two
basic solutions

U11U21U?} :X1Y21 X |: L 10

0 1 1]=X1Y21x<cl, ™)

1 0lo 0|1 0
0 0|1 0|1 0
UUZUZ = Xo Y'YV % = wCs.
0 1|0 0|0 1
N————
w 0 0|0 1[0 1

VI. EXPERIMENTAL RESULTS

In this section, we review experimental results obtained
with MATLAB implementations of the new computational
approach and that of [9] on some MDCS problems, and
provide new results about 3-level 3-encoder MDCS that could
not previously be obtained.

A. Computation time comparison

Approach 2-level-3-encoder | 3-level-3-encoder
Old in [9] >46 s >3600 s
New proposed 29 s 35s

Both inner and outer bounds for rate regions were obtained
for all 31 cases of the 2-level 3-encoder and all 69 cases
of the 3-level 3-encoder MDCS problems enumerated in [6],
using [9] and the new method in this paper. The average
(over cases) execution time, measured in seconds for each rate
region calculation, is displayed in the table above, indicate a
significant speedup.

B. Numerical results for MDCS

The results presented in [9], included a full list of rate
regions for 2-level 3-encoder MDCS proving that scalar binary
codes are insufficient for 6 out of the 31 cases. Owing to the
prohibitive complexity of [9] for 3-level-3-encoder MDCS,
results for these larger problems were unobtainable using
the technique in [9]. The method proposed in this paper
makes 3-level-3-encoder MDCS and even more complicated
networks quickly computable with simple MATLAB code.
The results we obtained by calculating the 3-level 3-encoder
MDCS regions are as follows.

There exist 15 out of 69 cases, where the rate region
obtained from Shannon outer bound and binary representable
matroid inner bound do not match, i.e we found gaps be-
tween these two bounds. The 15 cases include case num-
bers 8,14, 28,32,37,42,47,49,53,55,57,59,63, 65,69 from
Hau’s list [6].

One natural question is whether scalar linear codes over
a larger field size and eliminate the gap in any of the 15
cases where scalar linear binary codes were insufficient. Our
calculations showed that exactly the same achievable rate
regions for both 2-level and 3-level MDCS problems with 3
encoders are obtained by considering the larger inner bound of
matroids, i.e. by replacing I’} with T2 for N € {5,6}. That
is, if there is some field size such that scalar linear codes over
that field obtain the entire rate region then in all 100 cases that
field size may be taken to be binary. This conclusion follows
from the fact F%at for N < 7 is an inner bound for T'*,, since

a result of Fournier showed that all matroids on ground set
sizes < 7 are representable [12].

These results demonstrated that simple scalar codes could
not obtain the entire rate region for even these simple small
MDCS networks. A natural alternative is to employ vector
linear codes instead, which means encoding a group of out-
comes of source variables for several time steps together.
Passing from scalar codes to vector codes, in this sense, by
replacing T2 with T'°*°° in our 2-level 3-encoder achievable
rate regions, closes all of gaps, hence proving that the exact
rate regions for 2-level-3-encoder MDCS are the same as that
obtained from Shannon outer bound. This proves that vector
linear codes (in the sense §V) suffice to obtain achieve all of
the fundamental 2-level 3-encoder MDCS rate regions.

VII. CONCLUSION

This paper proposes a novel computational method inspired
by double descriptions for computing inner and outer rate
regions for MDCS and coded networks. The proposed double
description manipulation of the extreme ray representation
achieves significantly improved running times relative to a pre-
vious method utilizing Fourier-Motzkin projection, allowing
several new results about small MDCS to be proven.
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