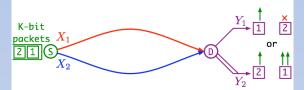
Capacity region of the permutation channel

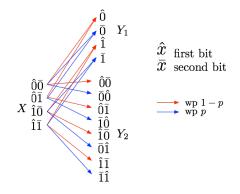
John M. Walsh and Steven Weber

How to use two paths to a destination?

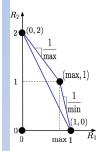


- Minimize "delay": ensure content arrives in order by sending same content on both paths
 ⇒ low throughput
- \bullet Maximize "throughput": send independent packets on the two paths \Rightarrow higher delay
- Each packet reception instant is a receiver, rate tradeoff among receivers captures T-D tradeoff

Same problem, depicted as a broadcast channel

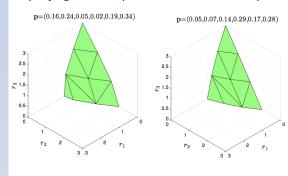


Capacity region for two packets

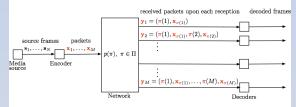


- Increasing rate R_1 (decreasing playback delay) requires decrease in rate R_2 at slope $1/\max > 1$ or $1/\min > 1$
- Time-sharing inner bound achievable by single channel use
- Outside this region requires coding across multiple channel uses (moving away from capacity boundary increases reliability)

Capacity region for three packets is convex hull of 10 rate points



Problem statement: sending M packets over a permutation DBC



Goal: characterize the region of achievable rate points, \mathcal{R} , in terms of the specified permutation distribution $\mathbf{p}=(p(\pi),\pi\in\Pi)$.

Achievability (inner bound): point to point channels

$$X = (A, \mathbf{x}_A)$$

$$A \subseteq [M]$$

$$p_{m,A}(B), B \subseteq A$$

$$Y = (\mathcal{B}, \mathbf{x}_B)$$

$$\mathcal{B} \subseteq A$$

$$\textbf{Proposition:} \quad C(A) = K \sum_{B \subseteq A} p_A(B) |B| = K \mathbb{E}_A[|\mathcal{B}|].$$

Proof. Let Q be the collection of disbns q on the contents of packets x_A .

$$\begin{split} C(A) &\equiv & \max_{\mathbf{q} \in \mathbb{Q}} H(Y) - H(Y|X) \\ &= & \max_{\mathbf{q} \in \mathbb{Q}} \left(H(\mathcal{B}) + H(\mathbf{x}_{\mathcal{B}}|\mathcal{B}) \right) - \left(H(\mathcal{B}) \right) &= & \max_{\mathbf{q} \in \mathbb{Q}} H(\mathbf{x}_{\mathcal{B}}|\mathcal{B}) \\ &= & \max_{\mathbf{q} \in \mathbb{Q}} \sum_{B \subseteq A} p_A(B) H(\mathbf{x}_{\mathcal{B}}|\mathcal{B} = B) \leq \sum_{B \subseteq A} p_A(B) K|B| \end{split}$$

Equality is achieved by the uniform distribution q.

Achievability theorem (inner bound)

ullet Fix assignment ${f A}=(A_1,\ldots,A_M)\in {\cal A}_M$: consider M P2P channels:

$$X_m \equiv (A_m, \mathbf{x}_{A_m}) \rightarrow Y_m \equiv (\mathcal{B}_m, \mathbf{x}_{\mathcal{B}_m}), m \in [M]$$

• Achievable rate point for $A: \mathbf{R}(\mathbf{A}) = (R_1(A_1), \dots, R_M(A_M))$

$$R_m(A_m) = K \sum_{B \in \mathcal{S}(A_m,m)} p_{A_m}(B)|B|, \ m \in [M]$$

 A region of achievable rates is defined by the polytope formed by the convex hull of the rate points for each possible packet assignment:

$$\mathcal{R}_{M}^{\text{in}} = \text{conv}\left(\{\mathbf{R}(\mathbf{A}), \ \mathbf{A} \in \mathcal{A}_{M}\}\right)$$

• Non-vertex points in this set are achievable via time-sharing across channel uses

DBC capacity theorem as a linear map from mutual information vectors to rate points

- ullet Define $u_m=(x_1,\ldots,x_m)$ and $y_m=(x_{\pi(1)},\ldots,x_{\pi(m)})$
- ullet General theorem for DBC with M receivers:

$$R_m \le I(y_m; u_m | u_{m-1}), m \in [M].$$

ullet Specialized to permutation channel with M receivers:

$$R_m \leq \sum_{G \in \mathcal{G}_m} p_m(G)I(\mathbf{x}_G; u_m|u_{m-1}), \ m \in [M]$$

for appropriate support \mathcal{G}_m and distribution $p_m(G)$, defined in terms of $(p(\pi), \pi \in \Pi)$.

• Capacity region $\mathcal{R} = \mathsf{conv}(\{R_m\})$

Entropy vectors through the linear map yields achievable rate points

- Convex hull of set of feasible mutual information vectors generated by a set of points (I)
- ullet Map each M.I. vector to a rate point: ${f R}={f T}{f I}$
- ullet Form convex hull of these rate points $\mathcal{R}_M^{\mathrm{out}} = \mathrm{conv}(\{\mathbf{R}\})$

This procedure can be automated for any specified permutation distribution $(p(\pi), \pi \in \Pi)$.

Summary

- Theorem (inner bound): $\mathcal{R}_M^{\mathrm{in}} = \mathrm{conv}(\{\mathbf{R}(\mathbf{A})\})$ for $\mathbf{A} \in \mathcal{A}_M$
- Theorem (outer bound): $\mathcal{R}_{M}^{\text{out}} = \text{conv}(\{\mathbf{R}\})$ for $\mathbf{R} = \mathbf{TI}$.
- Conjecture: $\mathcal{R}_{M}^{\text{in}} = \mathcal{R}_{M}^{\text{out}}$. Verified for M = 2, 3.