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Entropy vectors Two representations of joint distributions on binary rvs A finite terminating algorithm to determine membership

in the set of binary entropy vectors

. . e Lemma 1. The joint distribution p on N binary rvs
1. Let X = (Xq,..., Xn) be N discrete random variables with finite

support. p = (pv)(x) = P(X =x), x € {0, 1Y), 1. The algorithm considers a sequence of subsets of increasing cardinality
2. Let 7(X.4) be the entropy of the subset of rvs X4 = (X;,i € A) for and finds the marginal distributions on these subsets consistent with the
. = (Xi, . .
some non-empty subset A C {1, N} = [N]. and the collection of probabilities of each subset of rvs each taking the given entropy vector candidate.
B . value zero
3. Leth = (A(X.4), A C [N]) be the vector of entropies of each non-empty q= (pa(0) = P(X4 = 0), AC [N]) 2. The set of all possible binary distributions on a given set B C A of size
subset A C [N]. Note h has 2% — 1 entries. are equivalent in that there is a bijection between them. |B| = k — 1 consistent with the given entropies is stored in the set Qp.
e Example: for N = 3, h = (hy, ho, hs, hia, huz, hos, hi23). . X . o X . X
. Specifying the zero probabilities for all strict subsets leaves one degree of 3. Find candidate joint distributions pa on X4 consistent with their
4. A vector h € R? ~! is called entropic if its elements are the entropies freedom, the joint probability of zero. marginals pg for each B C A.
for some joint distribution p on the N rvs X. . . i .
5. The entropy vector region (EVR) 'y is the set of all entropic vectors. Example: N = 2 rvs. There exists an invertible matrix such that q = Mp: 4. For each candidate joint disbn p,4 set the remaining free variable using
N ~ the specified entropy h.4 (either 0,1,2 values).
6. Normalize by the number of bits for the support m: h = h/log,m, P1)(0) 11 P(1,2)(00)
and define Q} as the set of normalized entropy vectors (Hassibi and P(2(0) _ |1 1 Pa(O) | 5. Return all joint disbns p on X consistent with the given entropy vector
Shadbackt 2007). P(1,2)(00) 1 P(1.2)(10) h (if any).
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An easy proof of Yeung's result that P, = But, not all normalized entropy vectors are binary: An algorithm to generate an inner bound for a given
(and similarly P; = Q%) conv(®y) # Qy for N >4 outer bound
1. Let @y be the collection of all entropy vectors for N binary rvs. .
i iti inali i 1. Enumerating the vertices of P gives a vertex at 1. Enumerate the extreme points of the
2. The Shannor?—type |nequ‘a||t|es Ty plus cardinallty constraints (By = . g 4 & polytope Py, by using a double description
fhehi<li=1.... N}). denoted Py = I'y N By, form a polytope M b he he he e s e hes s p ) \ ) algorithm to convert the linear inequality
in entropy space that outer bounds conv(®y). i e I T T e o e e

representation into the generating vertices
3. For N =2, P, is generated by the vertices below, each of which is in ®, representation.

(using the algo.), as can be seen with the following constructions: 2. Evaluation of this point h using the membership algorithm asserts this \/
e (0,0,0): (X1, X3) = (0,0) with probability one. point is not in ®,. 2. For. each of these vertices, determine ifthey
e (0,1,1): X, deterministic, X uniform. lie in @, using the membership algorithm. conv(®y)
e (1,0,1): X, uniform, X deterministic. 3. But, this point is in €2} using the following construction: fix Z;, Z to be Keep only those vertices lying in @ .
e (11,1): X, = X; with probability one, X, uniform. independent uniform bits, then take
® (1,1,2): X3, X independent and uniform 3. Take the convex hull of these vertices to get
X1 =(Z1,22), Xo=(Z1® Z2,0), X3=(Z1,0), X4=(Z,0). the polytope Zy. Zy can be expressed in
Therefore Py = conv(Ps). normal linear inequality form by using the
. 0% o _ double description method again.
4. Further, since conv(®y) C Q € Py, we have P = Q3. 4. Can argue this point is an extreme point of Q}, and from here we can P &
5. Similar result and proof for N = 3 (both results originally due to Yeung). argue the result.
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Every Shannon type inequality is tight for N = 4 Key properties of the inner bound algorithm Extensions and future work
Running the above algorithm using the P4 outer bound gives an inner bound Theorem 2. Given any polytopic outer bound Oy to Q’[«V’ the inner . . .
with the following property. bound algorithm provides after a finite number of computations a polytopic 1. We further applied this general technique to the Shannon outer bound

augmented with the non-Shannon type inequality due to Zhang and
Yeung (1998), and established that none of the non-Shannon exposed
faces are tight on a full face of conv(®y).

inner bound In(Oy) to conv(®y) and hence Qj\, and I'y. Every exposed
face of Oy which is also an exposed face of conv(®y) will also be an
exposed face of Iy(On). Such an exposed face will also necessarily be an
exposed face of (2},

Theorem 1. For N = 4 every Shannon type inequality is tight on a
full (2N — 2 = 14) dimensional exposed face of conv(®,) and hence ;.
Furthermore, for every such full dimensional exposed face F7 of conv(®4)
that is contained in an exposed face Fp of Py, the containment is strict

2. We have also extended the inner bound algorithm to the set of entropy
(Fz S Fp). The inner bound algorithm applies to any outer bound, ie., not just vectors under one or more distribution constraints, meaning we are
Thus all Shannon inequalities are necessary for N > 4, but each such Px. In particular, augmenting the Shannon outer bound with the recently restricted to a subset of the full entropy vector space.
Shannon inequality can be improved! discovered non-Shannon-type inequalities yields a better outer bound.

3. An important open question is whether or not conv(®y) is a polytope.

The quality of the inner bound improves with the quality of the outer bound.
That is, given a sequence of increasingly tight outer bounds, our algorithm
generates a corresponding sequence of increasingly tight inner bounds, in
the sense that any face of the outer bound that is tight on an exposed face
of ®x will generate a face of the inner bound that is also tight.

If it is, then it admits a finite characterization in both a listing of its
generating vertices and the inequalities characterizing its exposed faces,
and it is of interest to obtain these listings. This is the subject of our
current work.
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