An inner bound technique on the normalized set of entropy vectors John M. Walsh and Steven Weber (Drexel University)

Entropy vectors

- 1. Let $\mathbf{X} = (X_1, \dots, X_N)$ be N discrete random variables with finite support.
- 2. Let $h(\mathbf{X}_{\mathcal{A}})$ be the entropy of the subset of rvs $\mathbf{X}_{\mathcal{A}} = (X_i, i \in \mathcal{A})$ for some non-empty subset $\mathcal{A} \subseteq \{1, \dots, N\} \equiv [N]$.
- 3. Let $\mathbf{h}=(h(\mathbf{X}_{\mathcal{A}}),\ \mathcal{A}\subseteq[N])$ be the vector of entropies of each non-empty subset $\mathcal{A}\subseteq[N].$ Note \mathbf{h} has 2^N-1 entries.
- Example: for N = 3, $\mathbf{h} = (h_1, h_2, h_3, h_{12}, h_{13}, h_{23}, h_{123})$.
- A vector h ∈ ℝ^{2^N-1} is called entropic if its elements are the entropies for some joint distribution p on the N rvs X.
- 5. The entropy vector region (EVR) $\bar{\Gamma}_N^*$ is the set of all entropic vectors.
- 6. Normalize by the number of bits for the support m: $\tilde{\mathbf{h}} = \mathbf{h}/\log_2 m$, and define $\tilde{\Omega}_N^*$ as the set of normalized entropy vectors (Hassibi and Shadbackt 2007).

Two representations of joint distributions on binary rvs

Lemma 1. The joint distribution p on N binary rvs

$$\mathbf{p} = (p_{(N)}(\mathbf{x}) = \mathbb{P}(\mathbf{X} = \mathbf{x}), \ \mathbf{x} \in \{0, 1\}^N),$$

and the collection of probabilities of each subset of rvs each taking the

$$\mathbf{q} = (p_{\mathcal{A}}(\mathbf{0}) = \mathbb{P}(\mathbf{X}_{\mathcal{A}} = \mathbf{0}), \ \mathcal{A} \subseteq [N])$$

are equivalent in that there is a bijection between them.

Specifying the zero probabilities for all $\it strict$ subsets leaves one degree of freedom, the joint probability of zero.

Example: N=2 rvs. There exists an invertible matrix such that $\mathbf{q}=\mathbf{M}\mathbf{p}$:

$$\begin{bmatrix} p_{(1)}(0) \\ p_{(2)}(0) \\ p_{(1,2)}(00) \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} p_{(1,2)}(00) \\ p_{(1,2)}(01) \\ p_{(1,2)}(10) \\ p_{(1,2)}(11) \end{bmatrix}.$$

A finite terminating algorithm to determine membership in the set of binary entropy vectors

- The algorithm considers a sequence of subsets of increasing cardinality and finds the marginal distributions on these subsets consistent with the given entropy vector candidate.
- 2. The set of all possible binary distributions on a given set $\mathcal{B} \subset \mathcal{A}$ of size $|\mathcal{B}| = k 1$ consistent with the given entropies is stored in the set $\mathcal{Q}_{\mathcal{B}}$.
- 3. Find candidate joint distributions $\mathbf{p}_{\mathcal{A}}$ on $\mathbf{X}_{\mathcal{A}}$ consistent with their marginals $\mathbf{p}_{\mathcal{B}}$ for each $\mathcal{B}\subseteq\mathcal{A}$.
- 4. For each candidate joint dishn $\mathbf{p}_{\mathcal{A}}$ set the remaining free variable using the specified entropy $h_{\mathcal{A}}$ (either 0,1,2 values).
- 5. Return all joint disbns ${\bf p}$ on ${\bf X}$ consistent with the given entropy vector ${\bf h}$ (if any).

An easy proof of Yeung's result that $\mathcal{P}_2=\bar{\Omega}_2^*$ (and similarly $\mathcal{P}_3=\bar{\Omega}_3^*$)

- 1. Let Φ_N be the collection of all entropy vectors for N binary rvs.
- 2. The Shannon-type inequalities Γ_N plus cardinality constraints $(\mathcal{B}_N = \{\mathbf{h}: h_i \leq 1, i=1,\dots,N\})$, denoted $\mathcal{P}_N = \Gamma_N \cap \mathcal{B}_N$, form a polytope in entropy space that outer bounds $\mathrm{conv}(\Phi_N)$.
- 3. For N=2, \mathcal{P}_2 is generated by the vertices below, each of which is in Φ_2 (using the algo.), as can be seen with the following constructions:
 - (0,0,0): $(X_1,X_2)=(0,0)$ with probability one.
 - (0, 1, 1): X₁ deterministic, X₂ uniform.
- (1,0,1): X₁ uniform, X₂ deterministic
- ullet (1,1,1): $X_1=X_2$ with probability one, X_1 uniform
- ullet (1,1,2): X_1,X_2 independent and uniform.

Therefore $P_2 = conv(\Phi_2)$.

- 4. Further, since $\mathrm{conv}(\Phi_N)\subseteq \bar{\Omega}_N^*\subseteq \mathcal{P}_N$, we have $\mathcal{P}_2=\bar{\Omega}_2^*$.
- 5. Similar result and proof for N=3 (both results originally due to Yeung).

But, not all normalized entropy vectors are binary: $\mathbf{conv}(\Phi_N) \neq \bar{\Omega}_N^* \text{ for } N \geq 4$

1. Enumerating the vertices of \mathcal{P}_4 gives a vertex at

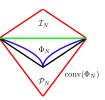
- 2. Evaluation of this point ${\bf h}$ using the membership algorithm asserts this point is not in Φ_4 .
- 3. But, this point is in Ω_4^* using the following construction: fix Z_1,Z_2 to be independent uniform bits, then take

$$X_1=(Z_1,Z_2), \quad X_2=(Z_1\oplus Z_2,0), \quad X_3=(Z_1,0), \quad X_4=(Z_2,0).$$

4. Can argue this point is an extreme point of $\bar{\Omega}_4^*,$ and from here we can argue the result.

An algorithm to generate an inner bound for a given outer bound

- 1. Enumerate the extreme points of the polytope \mathcal{P}_N , by using a double description algorithm to convert the linear inequality representation into the generating vertices representation.
- 2. For each of these vertices, determine if they lie in Φ_N , using the membership algorithm. Keep only those vertices lying in Φ_N .
- 3. Take the convex hull of these vertices to get the polytope \mathcal{I}_N . \mathcal{I}_N can be expressed in normal linear inequality form by using the double description method again.



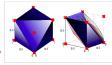
.

Every Shannon type inequality is tight for ${\cal N}=4$

Running the above algorithm using the \mathcal{P}_4 outer bound gives an inner bound with the following property.

Theorem 1. For N=4 every Shannon type inequality is tight on a full $(2^N-2=14)$ dimensional exposed face of $\mathrm{conv}(\Phi_4)$ and hence $\bar{\Omega}_4^*$. From the forevery such full dimensional exposed face $\mathcal{F}_{\mathcal{I}}$ of $\mathrm{conv}(\Phi_4)$ that is contained in an exposed face $\mathcal{F}_{\mathcal{P}}$ of \mathcal{P}_4 , the containment is strict $(\mathcal{F}_{\mathcal{I}} \subsetneq \mathcal{F}_{\mathcal{P}})$.

Thus all Shannon inequalities are necessary for $N \geq 4$, but each such Shannon inequality can be improved!



Key properties of the inner bound algorithm

Theorem 2. Given any polytopic outer bound \mathcal{O}_N to Ω^*_N , the inner bound algorithm provides after a finite number of computations a polytopic inner bound $\mathbb{I}_N(\mathcal{O}_N)$ to $\mathrm{conv}(\Phi_N)$ and $\mathrm{henc}\,\Omega^*_N$ and \mathbb{I}^*_N . Every exposed face of \mathcal{O}_N which is also an exposed face of $\mathrm{conv}(\Phi_N)$ will also be an exposed face of $\mathbb{I}_N(\mathcal{O}_N)$. Such an exposed face will also necessarily be an exposed face of Ω^*_N .

The inner bound algorithm applies to *any* outer bound, i.e., not just \mathcal{P}_N . In particular, augmenting the Shannon outer bound with the recently discovered non-Shannon-type inequalities yields a better outer bound.

The quality of the inner bound improves with the quality of the outer bound. That is, given a sequence of increasingly tight outer bounds, our algorithm generates a corresponding sequence of increasingly tight inner bounds, in the sense that any face of the outer bound that is tight on an exposed face of Φ_N will generate a face of the inner bound that is also tight.

Extensions and future work

- 1. We further applied this general technique to the Shannon outer bound augmented with the non-Shannon type inequality due to Zhang and Yeung (1998), and established that none of the non-Shannon exposed faces are tight on a full face of $conv(\Phi_A)$.
- We have also extended the inner bound algorithm to the set of entropy vectors under one or more distribution constraints, meaning we are restricted to a subset of the full entropy vector space.
- 3. An important open question is whether or not $\mathrm{conv}(\Phi_N)$ is a polytope. If it is, then it admits a finite characterization in both a listing of its generating vertices and the inequalities characterizing its exposed faces, and it is of interest to obtain these listings. This is the subject of our current work.